leetcode—课程表 拓扑排序

1 题目描述

你这个学期必须选修 numCourses 门课程,记为 0 到 numCourses - 1 。

在选修某些课程之前需要一些先修课程。 先修课程按数组 prerequisites 给出,其中 prerequisites[i] = [ai, bi] ,表示如果要学习课程 ai 则 必须 先学习课程  bi 。

  • 例如,先修课程对 [0, 1] 表示:想要学习课程 0 ,你需要先完成课程 1 。

请你判断是否可能完成所有课程的学习?如果可以,返回 true ;否则,返回 false 。

示例 1:

输入:numCourses = 2, prerequisites = [[1,0]]
输出:true
解释:总共有 2 门课程。学习课程 1 之前,你需要完成课程 0 。这是可能的。

示例 2:

输入:numCourses = 2, prerequisites = [[1,0],[0,1]]
输出:false
解释:总共有 2 门课程。学习课程 1 之前,你需要先完成​课程 0 ;并且学习课程 0 之前,你还应先完成课程 1 。这是不可能的

2 拓扑排序

有向无环图:一定有一个点的入度为0,如果找不到入度为0的点,这个图一定是带环的

入度:入度就是指向该结点的边数

出度:出度就是该结点指向其他结点的边数

拓扑排序思路:一个有向无环图,如果图中存在入度为0 的节点,就把这个点删掉,同时也删掉这个点所连的边;重复上述步骤,如果所有点都能被删掉,则这个图可以进行拓扑排序

3 方法

将本题建模成一个求拓扑排序的问题了:

  1. 我们将每一门课看成一个节点;
  2. 如果想要学习课程 AAA 之前必须完成课程 BBB,那么我们从 BBB 到 AAA 连接一条有向边。这样以来,在拓扑排序中,BBB 一定出现在 AAA 的前面。

算法

对于图中的任意一个节点,它在搜索的过程中有三种状态,即:

  • 「未搜索」:我们还没有搜索到这个节点;
  • 「搜索中」:我们搜索过这个节点,但还没有回溯到该节点,即该节点还没有入栈,还有相邻的节点没有搜索完成);
  • 「已完成」:我们搜索过并且回溯过这个节点,即该节点已经入栈,并且所有该节点的相邻节点都出现在栈的更底部的位置,满足拓扑排序的要求。

通过上述的三种状态,我们就可以给出使用深度优先搜索得到拓扑排序的算法流程,在每一轮的搜索搜索开始时,我们任取一个「未搜索」的节点开始进行深度优先搜索。

4 代码

package matrix;

import java.util.ArrayList;
import java.util.List;

public class TuoPu {
    public static void main(String[] args) {
        int numCourses = 2;
        int[][] prerequisites = {{1,0}};
        System.out.println(canFinish(numCourses, prerequisites));
    }


    // 课程表
    // 存储每个课程的邻接节点列表
    static List<List<Integer>> edges;
    // 存储每个课程是否被访问过
    static int[] visited;
    // 表示当前拓扑排序是否合法
    static boolean vaild = true;
    public static boolean canFinish(int numCourses, int[][] prerequisites) {
        // 初始化邻接表和访问状态
        edges = new ArrayList<List<Integer>>();
        for(int i = 0; i < numCourses; i++){
            edges.add(new ArrayList<Integer>());
        }
        visited = new int[numCourses];
        for(int[] info : prerequisites){
            edges.get(info[1]).add(info[0]);
        }

        // 进行拓扑排序
        for(int i = 0; i < numCourses && vaild; i++){
            if(visited[i] == 0){
                dfsHelp(i);  // 调用深度优先搜索进行拓扑排序
            }
        }
        return vaild;
    }

    // 深度优先搜索 用于拓扑排序
    public static void dfsHelp(int u){
        // 标记当前节点为已访问
        visited[u] = 1;
        // 遍历当前节点的所有邻接节点
        for(int v : edges.get(u)){
            // 如果邻接节点未被访问递归
            if(visited[v] == 0){
                dfsHelp(v);
                // 若存在环 则终止搜索
                if(! vaild){
                    return;
                }
            }else if(visited[v] == 1){
                // 若邻接节点正在被访问 说明存在环 终止访问
                vaild = false;
                return;
            }
        }
        // 标记当前节点已经被完全访问
        visited[u] = 2;
    }

}

参考:

作者:力扣官方题解
链接:https://leetcode.cn/problems/course-schedule/solutions/359392/ke-cheng-biao-by-

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/354735.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

旋转编码器SIQ-02FVS3驱动(AuroraFOC)

一. 简介 本次将基于AuroraFOC开发板&#xff0c;来教大家如何将旋转编码器按键优雅地使用起来&#xff0c;为大家开发多功能按键提供一种思路。 开发环境 STM32CubeMX HAL库Clion 作者: FPGA之旅(ValentineHP) 二. 原理(图)介绍 旋转编码器按键原理图如下&#xff0c;它…

《动手学深度学习(PyTorch版)》笔记3.1

Chapter3 Linear Neural Networks 3.1 Linear Regression 3.1.1 Basic Concepts 我们通常使用 n n n来表示数据集中的样本数。对索引为 i i i的样本&#xff0c;其输入表示为 x ( i ) [ x 1 ( i ) , x 2 ( i ) , . . . , x n ( i ) ] ⊤ \mathbf{x}^{(i)} [x_1^{(i)}, x_2…

【cdh】hive执行SQL提示缺少3.0.0-cdh6.3.2-mr-framework.tar.gz文件

问题&#xff1a;执行SQL报错提示缺少文件 异常信息如下 在hdfs上查看的时候连文件夹都没有&#xff0c;所以这个异常会抛出&#xff0c;但是我是基于CDH搭建的&#xff0c;可以直接基于下面操作 执行完成之后查看HDFS文件 重新执行SQL发现可以正常执行了

ad18学习笔记十六:v割

所谓“V割”是印刷电路板&#xff08;PCB&#xff09;厂商依据客户的图纸要求&#xff0c;事先在PCB的特定位置用转盘刀具切割好的一条条分割线&#xff0c;其目的是为了方便后续SMT电路板组装完成后的分板之用&#xff0c;因为其切割后的外型看起来就像个英文的“V”字型&…

【机器学习】强化学习(六)-DQN(Deep Q-Learning)训练月球着陆器示例

概述 Deep Q-Learning&#xff08;深度 Q 学习&#xff09;是一种强化学习算法&#xff0c;用于解决决策问题&#xff0c;其中代理&#xff08;agent&#xff09;通过学习在不同环境中采取行动来最大化累积奖励。Lunar Lander 是一个经典的强化学习问题&#xff0c;其中代理的任…

教学质量常态监控与评价平台

教学质量常态监控与评价平台&#xff0c;以提高教学质量为目标导向&#xff0c;利用Al、大数据等新型技术手段作为技术支撑&#xff0c;服务于教学质量科、督导、教师、学生等角色&#xff0c;基于教学过程数据&#xff0c;关注教师的教学内涵&#xff0c;覆盖了对教师、课堂、…

【刷题】 leetcode 面试题 08.05.递归乘法

递归乘法 1 题目描述2 思路一&#xff08;返璞归真版&#xff09;3 思路二&#xff08;二进制乘法器版&#xff09;4 思路三&#xff08;变态版&#xff09;Thanks♪(&#xff65;ω&#xff65;)&#xff89;谢谢阅读下一篇文章见&#xff01;&#xff01;&#xff01; 1 题目…

数据结构.双链表循环链表

一、1.双链表的初始化 void InitLNode(LinkList& L)//双链表的初始化 {L (LNode*)malloc(sizeof(LNode));L->prior NULL;L->next NULL;} 2.双链表的插入 void DInsert(LNode* p,LNode*s)//在p结点后面插入s结点 {s->next p->next;s->next->prior s;…

使用dockers-compose搭建开源监控和可视化工具

简介 Prometheus 和 Grafana 是两个常用的开源监控和可视化工具。 Prometheus 是一个用于存储和查询时间序列数据的系统。它提供了用于监控和报警的数据收集、存储、查询和图形化展示能力。Prometheus 使用拉模型&#xff08;pull model&#xff09;&#xff0c;通过 HTTP 协议…

微信小程序(十九)组件通信(子传父)

注释很详细&#xff0c;直接上代码 上一篇 新增内容&#xff1a; 1.定义触发事件向父组件传输数据 2.父组件绑定绑定触发事件并获取数据 源码&#xff1a; myNav.wxml <view class"navigationBar custom-class" style"padding-top: {{test}}px;">&l…

【GitHub项目推荐--不错的 React 开源项目】【转载】

用 React Flow 连接你的想法 用 React Flow 连接你的想法&#xff0c;这是一个高度可定制的库&#xff0c;基于 React 用于构建基于节点的 交互式 UI、编辑器、流程图和图表。 开源地址&#xff1a;https://github.com/wbkd/react-flow Bulletproof React 一个简单、可扩展且…

什么时跨域问题和如何解决跨域问题

什么是跨域问题&#xff1f;解决跨域的方案都有哪些&#xff1f;日常工作中会使用哪种解决方案&#xff1f; 跨域问题指的是不同站点之间&#xff0c;使用ajax无法互相调用的问题。跨域问题本质是浏览器的一种保护机制&#xff0c;它的初衷是为了保证用户的安全&#xff0c;防…

一道CTF签到题

点击题目的签到&#xff0c;提示&#xff1a; 看来需要修改请求的源地址&#xff1a; 上来我先尝试了我最常用的xff&#xff0c;结果不行&#xff0c;于是尝试了其他的几个常用请求头&#xff1a; 1.host头 如果后端从host取值来判断是否是本地就可以通过此方法进行绕过&…

【语录】岁月

中年 写中年&#xff0c;应该是年少励志三千里 踌躇百步无寸功&#xff0c;转眼高堂已白发 儿女蹒跚学堂中&#xff0c;不如意事常八九&#xff0c;可与人言无二三 可是诸位&#xff0c;不用悲伤&#xff0c;稻盛和夫说&#xff0c; 人生并不是一场物质的盛宴&#xff0c;而是…

面经基础版案例(路由,请求渲染,传参,组件缓存)

文章目录 1.案例效果分析2.配置一级路由&#xff08;首页&#xff0c;详情&#xff09;3.配置二级路由4.导航高亮效果5.首页的请求渲染6.传参&#xff08;查询参数 $ 动态路由&#xff09;7.详情页渲染8.组件缓存kepp-alive9.总结 1.案例效果分析 2.配置一级路由&#xff08;首…

MGRE综合实验

一&#xff1a;实验要求 二&#xff1a;实验过程 1、配置IP [r1]int g0/0/0 [r1-GigabitEthernet0/0/0]ip add 192.168.1.1 24 [r1-GigabitEthernet0/0/0]q [r1]int s4/0/0 [r1-Serial4/0/0]ip add 15.0.0.1 8 [r2]int g0/0/0 [r2-GigabitEthernet0/0/0]ip add 192.168.2.1 2…

【高效开发工具系列】Java读取Html

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

STM32 SDIO接口传输中的错误处理和中断优化技巧

在 STM32 的 SDIO 接口传输中&#xff0c;错误处理和中断优化是确保传输稳定和可靠性的重要方面。下面将介绍一些常用的错误处理和中断优化技巧&#xff0c;并给出相应的代码示例。 ✅作者简介&#xff1a;热爱科研的嵌入式开发者&#xff0c;修心和技术同步精进 ❤欢迎关注我的…

Redis 持久化详解:RDB 与 AOF 的配置、触发机制和实际测试

什么是持久化&#xff1f; 就是 Redis 将内存数据持久化到硬盘&#xff0c;避免从数据库恢复数据。之所以避免从数据库恢复数据是因为后端数据通常有性能瓶颈&#xff0c;大量数据从数据库恢复可能会给数据库造成巨大压力。 Redis 持久化通常有 RDB 和 AOF 两种方式&#xff…

VMware虚拟机部署Linux Ubuntu系统

本文介绍基于VMware Workstation Pro虚拟机软件&#xff0c;配置Linux Ubuntu操作系统环境的方法。 首先&#xff0c;我们需要进行VMware Workstation Pro虚拟机软件的下载与安装。需要注意的是&#xff0c;VMware Workstation Pro软件是一个收费软件&#xff0c;而互联网中有很…