C++力扣题目416--分割等和子集 1049--最后一块石头的重量II

416. 分割等和子集

力扣题目链接(opens new window)

题目难易:中等

给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

注意: 每个数组中的元素不会超过 100 数组的大小不会超过 200

示例 1:

  • 输入: [1, 5, 11, 5]
  • 输出: true
  • 解释: 数组可以分割成 [1, 5, 5] 和 [11].

示例 2:

  • 输入: [1, 2, 3, 5]
  • 输出: false
  • 解释: 数组不能分割成两个元素和相等的子集.

提示:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 100

#思路

这道题目初步看,和如下两题几乎是一样的,大家可以用回溯法,解决如下两题

  • 698.划分为k个相等的子集
  • 473.火柴拼正方形

这道题目是要找是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

那么只要找到集合里能够出现 sum / 2 的子集总和,就算是可以分割成两个相同元素和子集了。

本题是可以用回溯暴力搜索出所有答案的,但最后超时了,也不想再优化了,放弃回溯,直接上01背包吧。

如果对01背包不够了解,建议仔细看完如下两篇:

  • 动态规划:关于01背包问题,你该了解这些!(opens new window)
  • 动态规划:关于01背包问题,你该了解这些!(滚动数组)(opens new window)

#01背包问题

背包问题,大家都知道,有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

背包问题有多种背包方式,常见的有:01背包、完全背包、多重背包、分组背包和混合背包等等。

要注意题目描述中商品是不是可以重复放入。

即一个商品如果可以重复多次放入是完全背包,而只能放入一次是01背包,写法还是不一样的。

要明确本题中我们要使用的是01背包,因为元素我们只能用一次。

回归主题:首先,本题要求集合里能否出现总和为 sum / 2 的子集。

那么来一一对应一下本题,看看背包问题如何来解决。

只有确定了如下四点,才能把01背包问题套到本题上来。

  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。

以上分析完,我们就可以套用01背包,来解决这个问题了。

动规五部曲分析如下:

  1. 确定dp数组以及下标的含义

01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j]。

本题中每一个元素的数值既是重量,也是价值。

套到本题,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]

那么如果背包容量为target, dp[target]就是装满 背包之后的重量,所以 当 dp[target] == target 的时候,背包就装满了。

有录友可能想,那还有装不满的时候?

拿输入数组 [1, 5, 11, 5],举例, dp[7] 只能等于 6,因为 只能放进 1 和 5。

而dp[6] 就可以等于6了,放进1 和 5,那么dp[6] == 6,说明背包装满了。

  1. 确定递推公式

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。

所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);

  1. dp数组如何初始化

在01背包,一维dp如何初始化,已经讲过,

从dp[j]的定义来看,首先dp[0]一定是0。

如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。

这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了

本题题目中 只包含正整数的非空数组,所以非0下标的元素初始化为0就可以了。

代码如下:

// 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
// 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
vector<int> dp(10001, 0);

  1. 确定遍历顺序

在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中就已经说明:如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

代码如下:

// 开始 01背包
for(int i = 0; i < nums.size(); i++) {
    for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历
        dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
    }
}

  1. 举例推导dp数组

dp[j]的数值一定是小于等于j的。

如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j,理解这一点很重要。

用例1,输入[1,5,11,5] 为例,如图:

416.分割等和子集2

最后dp[11] == 11,说明可以将这个数组分割成两个子集,使得两个子集的元素和相等。

综上分析完毕,C++代码如下:

class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int sum = 0;

        // dp[i]中的i表示背包内总和
        // 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
        // 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
        vector<int> dp(10001, 0);
        for (int i = 0; i < nums.size(); i++) {
            sum += nums[i];
        }
        // 也可以使用库函数一步求和
        // int sum = accumulate(nums.begin(), nums.end(), 0);
        if (sum % 2 == 1) return false;
        int target = sum / 2;

        // 开始 01背包
        for(int i = 0; i < nums.size(); i++) {
            for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历
                dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
            }
        }
        // 集合中的元素正好可以凑成总和target
        if (dp[target] == target) return true;
        return false;
    }
};


 

  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n),虽然dp数组大小为一个常数,但是大常数

#总结

这道题目就是一道01背包应用类的题目,需要我们拆解题目,然后套入01背包的场景。

01背包相对于本题,主要要理解,题目中物品是nums[i],重量是nums[i],价值也是nums[i],背包体积是sum/2。

看代码的话,就可以发现,基本就是按照01背包的写法来的。

 

1049.最后一块石头的重量II

力扣题目链接(opens new window)

题目难度:中等

有一堆石头,每块石头的重量都是正整数。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:

如果 x == y,那么两块石头都会被完全粉碎;

如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。

最后,最多只会剩下一块石头。返回此石头最小的可能重量。如果没有石头剩下,就返回 0。

示例:

  • 输入:[2,7,4,1,8,1]
  • 输出:1

解释:

  • 组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
  • 组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
  • 组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
  • 组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。

提示:

  • 1 <= stones.length <= 30
  • 1 <= stones[i] <= 1000

#思路

如果对背包问题不都熟悉先看这两篇:

  • 动态规划:关于01背包问题,你该了解这些!(opens new window)
  • 动态规划:关于01背包问题,你该了解这些!(滚动数组)(opens new window)

本题其实就是尽量让石头分成重量相同的两堆,相撞之后剩下的石头最小,这样就化解成01背包问题了

是不是感觉和昨天讲解的416. 分割等和子集 (opens new window)非常像了。

本题物品的重量为stones[i],物品的价值也为stones[i]。

对应着01背包里的物品重量weight[i]和 物品价值value[i]。

接下来进行动规五步曲:

  1. 确定dp数组以及下标的含义

dp[j]表示容量(这里说容量更形象,其实就是重量)为j的背包,最多可以背最大重量为dp[j]

可以回忆一下01背包中,dp[j]的含义,容量为j的背包,最多可以装的价值为 dp[j]。

相对于 01背包,本题中,石头的重量是 stones[i],石头的价值也是 stones[i] ,可以 “最多可以装的价值为 dp[j]” == “最多可以背的重量为dp[j]”

  1. 确定递推公式

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题则是:dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);

一些同学可能看到这dp[j - stones[i]] + stones[i]中 又有- stones[i] 又有+stones[i],看着有点晕乎。

大家可以再去看 dp[j]的含义。

  1. dp数组如何初始化

既然 dp[j]中的j表示容量,那么最大容量(重量)是多少呢,就是所有石头的重量和。

因为提示中给出1 <= stones.length <= 30,1 <= stones[i] <= 1000,所以最大重量就是30 * 1000 。

而我们要求的target其实只是最大重量的一半,所以dp数组开到15000大小就可以了。

当然也可以把石头遍历一遍,计算出石头总重量 然后除2,得到dp数组的大小。

我这里就直接用15000了。

接下来就是如何初始化dp[j]呢,因为重量都不会是负数,所以dp[j]都初始化为0就可以了,这样在递归公式dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);中dp[j]才不会初始值所覆盖。

代码为:

vector<int> dp(15001, 0);

  1. 确定遍历顺序

在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中就已经说明:如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

代码如下:

for (int i = 0; i < stones.size(); i++) { // 遍历物品
    for (int j = target; j >= stones[i]; j--) { // 遍历背包
        dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
    }
}

  1. 举例推导dp数组

举例,输入:[2,4,1,1],此时target = (2 + 4 + 1 + 1)/2 = 4 ,dp数组状态图如下:

1049.最后一块石头的重量II

最后dp[target]里是容量为target的背包所能背的最大重量。

那么分成两堆石头,一堆石头的总重量是dp[target],另一堆就是sum - dp[target]。

在计算target的时候,target = sum / 2 因为是向下取整,所以sum - dp[target] 一定是大于等于dp[target]的

那么相撞之后剩下的最小石头重量就是 (sum - dp[target]) - dp[target]。

以上分析完毕,C++代码如下:

class Solution {
public:
    int lastStoneWeightII(vector<int>& stones) {
        vector<int> dp(15001, 0);
        int sum = 0;
        for (int i = 0; i < stones.size(); i++) sum += stones[i];
        int target = sum / 2;
        for (int i = 0; i < stones.size(); i++) { // 遍历物品
            for (int j = target; j >= stones[i]; j--) { // 遍历背包
                dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
            }
        }
        return sum - dp[target] - dp[target];
    }
};

  • 时间复杂度:O(m × n) , m是石头总重量(准确的说是总重量的一半),n为石头块数
  • 空间复杂度:O(m)

#总结

本题其实和416. 分割等和子集 (opens new window)几乎是一样的,只是最后对dp[target]的处理方式不同。

416. 分割等和子集 (opens new window)相当于是求背包是否正好装满,而本题是求背包最多能装多少。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/354262.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

openssl3.2 - 测试程序的学习 - test\aesgcmtest.c

文章目录 openssl3.2 - 测试程序的学习 - test\aesgcmtest.c概述笔记能学到的流程性内容END openssl3.2 - 测试程序的学习 - test\aesgcmtest.c 概述 openssl3.2 - 测试程序的学习 aesgcmtest.c 工程搭建时, 发现没有提供 test_get_options(), cleanup_tests(), 需要自己补上…

数据结构与算法:复杂度

友友们大家好啊&#xff0c;今天开始正式学习数据结构与算法有关内容&#xff0c;后续不断更新数据结构有关知识内容&#xff0c;希望多多支持&#xff01; 数据结构&#xff1a; 数据结构是用于存储和组织数据的方式&#xff0c;以便可以有效地访问和修改数据。不同的数据结构…

翻译: GPT-4 Vision从图像转换为完全可编辑的表格 升级Streamlit四

GPT-4 Vision 系列: 翻译: GPT-4 with Vision 升级 Streamlit 应用程序的 7 种方式一翻译: GPT-4 with Vision 升级 Streamlit 应用程序的 7 种方式二翻译: GPT-4 Vision静态图表转换为动态数据可视化 升级Streamlit 三 当您需要从不可复制或不可下载的表中提取数据时&#x…

Java+Spring Cloud +Vue+UniApp微服务智慧工地云平台源码

目录 智慧工地云平台功能 【劳务工种】所属工种有哪些&#xff1f; 1.管理人员 2.信息采集 3.证件管理 4.考勤管理 5.考勤明细 6.工资管理 7.现场统计 8.WIFI教育 9.课程库管理 10.工种管理 11.分包商管理 12.班组管理 13.项目管理 智慧工地管理平台是以物联网、…

C++进阶(七)AVL树

&#x1f4d8;北尘_&#xff1a;个人主页 &#x1f30e;个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上&#xff0c;不忘来时的初心 文章目录 一、AVL树的概念二、AVL树的旋转1、左单旋2、右单旋3、左右双旋4、右左双旋 三、AVL树的基本实…

跨平台框架Flutter工作原理初探

前言 Flutter是开发跨平台应用的框架&#xff0c;支持将应用打包到几乎市面所有平台&#xff0c;本文较浅层次探究flutter框架的工作原理 参考来源为flutter中文社区官方文档 Flutter 开发文档 - Flutter 中文文档 - Flutter 中文开发者网站 - Flutter flutter的布局 组合…

防御保护--第一次实验

目录 一&#xff0c;vlan的划分及在防火墙上创建单臂路由 二&#xff0c;创建安全区域 三&#xff0c;配置安全策略 四&#xff0c;配置认证策略 五&#xff0c;配置NAT策略 1.将内网中各个接口能够ping通自己的网关 2..生产区在工作时间内可以访问服务器区&#xff0c;仅…

vivado 2018.3 烧写固化FPGA verilog代码以及出现的问题解决

vivado一般是与SDK同时使用的,像zynq系列,通过SDK烧写固化代码很方便,但是有的时候比如本人目前使用的是XC7K325T FPGA进行的开发,不会用到SDK软件,所以烧写固化代码想通过vivado直接操作。 1、按照网上百度的方法进行设置,如下 遇到的第一个问题就是在vivado2018.3的fl…

Blender教程(基础)-物体添加-03

1、打开的界面如下图会存在3个物体、英文状态下按键盘字母A全选、然后按键盘delete删除。 删除后一片空白 2、新增物体 方式1&#xff1a;在英文状态下按键盘shiftA组合键弹出如下添加物体弹窗 方式2&#xff1a;在菜单下找到添加点击弹出添加选项 3、举例新增物体 采用上述…

【数字通信】数字带通传输

数字调制和数字带通传输系统 数字调制解调 数字调制 用数字基带信号控制载波&#xff0c;把数字基带信号变换为数字带通信号的过程 目的&#xff1a;数字基带信号含大量低频分量&#xff0c;无法通过具有带通特性的信道传输。需对数字基带信号进行数字调制使信号与信道的特…

log4j2 java api 入门介绍

概述 Log4j 2 API 提供了应用程序应该编码的接口&#xff0c;并提供了实现者创建日志实现所需的适配器组件。 虽然 Log4j 2 在 API 和实现之间被分解&#xff0c;但这样做的主要目的不是允许多个实现&#xff0c;尽管这当然是可能的&#xff0c;而是明确定义在“正常”应用程…

YOLOv8融合改进 更换检测头同时改进C2f模块

一、Detect_DyHead检测头和C2f-EMSC,C2f-EMSCP模块 详细介绍和代码在往期的博客里: Detect_DyHead: (YOLOv8改进检测头Detect为Detect_Dyhead-CSDN博客) C2f-EMSC和C2f-EMSCP: (YOLOv8改进之多尺度转换模块C2f-EMSC和C2f-EMSCP-CSDN博客) 二、算法实现 1、将检测…

github连不上

github连不上 错误提示解决方案 错误提示 fatal: unable to access ‘https://github.com/Ada-design/qianduan.git/’: Failed to connect to github.com port 443 after 21073 ms: Couldn’t connect to server 解决方案 下载steam https://steampp.net/ 安装成功之后&am…

Linux系统明明还有足够的物理内存,调用fork却返回ENOMEM

使用systemtab hook fork&#xff0c;定位到报错调用路径SYSCALL_DEFINE0(fork)-》kernel_clone-》copy_process-》copy_mm-》dup_mm-》dup_mmap-》security_vm_enough_memory_mm-》__vm_enough_memory __vm_enough_memory返回了 -ENOMEM。其源码如下&#xff1a; 从代码可知f…

算法38:子数组的最小值之和(力扣907题)----单调栈

题目&#xff1a; 给定一个整数数组 arr&#xff0c;找到 min(b) 的总和&#xff0c;其中 b 的范围为 arr 的每个&#xff08;连续&#xff09;子数组。 示例 1&#xff1a; 输入&#xff1a;arr [3,1,2,4] 输出&#xff1a;17 解释&#xff1a; 子数组为 [3]&#xff0c;[…

Java集合总览

1.总览 Java中的集合分List、Set、Queue、Map 4种类型。 List&#xff1a;大多数实现元素可以为null&#xff0c;可重复&#xff0c;底层是数组或链表的结构&#xff0c;支持动态扩容 Set&#xff1a;大多数实现元素可以为null但只能是1个&#xff0c;不能重复&#xff0c; …

MySQL 聚集与非聚集索引

文章目录 1.聚集索引1.1 介绍1.2 优点1.3 缺点 2.非聚集索引3.区别参考文献 MySQL 中&#xff0c;根据索引树叶结点存放数据行还是数据行的地址&#xff0c;可以将索引分为两类&#xff1a; 存放数据行&#xff1a;聚集索引存放数据行地址&#xff1a;非聚集索引 InnoDB 使用聚…

Linux学习之文件系统与动静态库

目录 一&#xff0c;文件的管理 什么是磁盘&#xff1f; 磁盘的逻辑抽象结构 格式化 inode 挂载 软硬链接 二&#xff0c;动静态库 什么是动静态库&#xff1f; 1.站在库的制作者角度 静态库&#xff1a; 制作一个静态库 2.站在静态库使用者的角度 动态库 作为制…

windows安装PostgreSQL后进行远程连接,发生SSL错误

1. 报错情况 SSL 关闭 的 pg_hba.conf 记录 (pgjdbc: autodetected server-encoding to be GB2312, if the message is not readable, please check database logs and/or host, port, dbname, user, password, pg_hba.conf) 或是乱码提示&#xff0c;提示中有SSL、 pg_hba.con…

C语言KR圣经笔记 5.12 复杂声明

5.12 复杂声明 C 语言有时会因为声明的语法而受到谴责&#xff0c;特别是涉及函数指针的声明语法。语法试图使声明和使用一致&#xff1b;在简单的情况下它的效果不错&#xff0c;但在更复杂的情况下会让人困惑&#xff0c;因为声明不能从左往右读&#xff0c;而且括号被过度使…