粒子群优化算法(Particle Swarm Optimization,PSO)求解基于移动边缘计算的任务卸载与资源调度优化(提供MATLAB代码)

一、优化模型介绍

移动边缘计算的任务卸载与资源调度优化原理是通过利用配备计算资源的移动无人机来为本地资源有限的移动用户提供计算卸载机会,以减轻用户设备的计算负担并提高计算性能。具体原理如下:

  1. 任务卸载:移动边缘计算系统将用户的计算任务分为两部分:一部分卸载到关联的无人机进行计算,剩余部分在本地进行计算。通过将部分计算任务卸载到无人机上,可以减轻用户设备的计算负担,提高计算效率。

  2. 资源调度:为了最小化所有用户间的最大总时延,需要联合优化无人机的轨迹和用户的调度。轨迹优化指的是确定无人机的飞行路径,使得无人机能够高效地服务所有用户。用户调度指的是确定每个用户的计算任务在何时卸载到无人机上进行计算,以及剩余部分在本地进行计算。

  3. 优化问题:任务卸载与资源调度优化问题是一个混合整数非凸优化问题,具有离散二进制变量和耦合约束。为了有效求解该问题,可以引入一些辅助变量将其转化为数学上易于处理的形式。然后,可以采用惩罚凹凸过程的算法来求解转化后的问题。

移动边缘计算的任务卸载与资源调度是指在移动设备和边缘服务器之间,将部分计算任务从移动设备卸载到边缘服务器,并合理分配资源以提高系统性能和降低能耗,通过移动边缘计算的任务卸载与资源调度优化,可以有效提高移动用户的计算性能,并减轻用户设备的计算负担。
在本文所研究的区块链网络中,优化的变量为:挖矿决策(即 m)和资源分配(即 p 和 f),目标函数是使所有矿工的总利润最大化。问题可以表述为:

max ⁡ m , p , f F miner  = ∑ i ∈ N ′ F i miner   s.t.  C 1 : m i ∈ { 0 , 1 } , ∀ i ∈ N C 2 : p min ⁡ ≤ p i ≤ p max ⁡ , ∀ i ∈ N ′ C 3 : f min ⁡ ≤ f i ≤ f max ⁡ , ∀ i ∈ N ′ C 4 : ∑ i ∈ N ′ f i ≤ f total  C 5 : F M S P ≥ 0 C 6 : T i t + T i m + T i o ≤ T i max ⁡ , ∀ i ∈ N ′ \begin{aligned} \max _{\mathbf{m}, \mathbf{p}, \mathbf{f}} & F^{\text {miner }}=\sum_{i \in \mathcal{N}^{\prime}} F_{i}^{\text {miner }} \\ \text { s.t. } & C 1: m_{i} \in\{0,1\}, \forall i \in \mathcal{N} \\ & C 2: p^{\min } \leq p_{i} \leq p^{\max }, \forall i \in \mathcal{N}^{\prime} \\ & C 3: f^{\min } \leq f_{i} \leq f^{\max }, \forall i \in \mathcal{N}^{\prime} \\ & C 4: \sum_{i \in \mathcal{N}^{\prime}} f_{i} \leq f^{\text {total }} \\ & C 5: F^{M S P} \geq 0 \\ & C 6: T_{i}^{t}+T_{i}^{m}+T_{i}^{o} \leq T_{i}^{\max }, \forall i \in \mathcal{N}^{\prime} \end{aligned} m,p,fmax s.t. Fminer =iNFiminer C1:mi{0,1},iNC2:pminpipmax,iNC3:fminfifmax,iNC4:iNfiftotal C5:FMSP0C6:Tit+Tim+TioTimax,iN
其中:
C1表示每个矿工可以决定是否参与挖矿;
C2 指定分配给每个参与矿机的最小和最大传输功率;
C3 表示分配给每个参与矿工的最小和最大计算资源;
C4表示分配给参与矿机的总计算资源不能超过MEC服务器的总容量;
C5保证MSP的利润不小于0;
C6 规定卸载、挖掘和传播步骤的总时间不能超过最长时间约束。
在所研究的区块链网络中,我们假设 IoTD 是同质的,并且每个 IoTD 都具有相同的传输功率范围和相同的计算资源范围。
上式中:
F i m i n e r = ( w + α D i ) P i m ( 1 − P i o ) − c 1 E i t − c 2 f i , ∀ i ∈ N ′ R i = B log ⁡ 2 ( 1 + p i H i σ 2 + ∑ j ∈ N ′ \ i m j p j H j ) , ∀ i ∈ N ′ T i t = D i R i , ∀ i ∈ N ′ T i m = D i X i f i , ∀ i ∈ N ′ E i m = k 1 f i 3 T i m , ∀ i ∈ N ′ P i m = k 2 T i m , ∀ i ∈ N ′ F M S P = ∑ i ∈ N ′ ( c 2 f i − c 3 E i m ) − c 3 E 0 P i o = 1 − e − λ ( T i o + T i s ) = 1 − e − λ ( z D i + T i t ) , ∀ i ∈ N ′ F_i^{miner}=(w+\alpha D_i)P_i^m(1-P_i^o)-c_1E_i^t-c_2f_i,\forall i\in\mathcal{N'}\\R_{i}=B \log _{2}\left(1+\frac{p_{i} H_{i}}{\sigma^{2}+\sum_{j \in \mathcal{N}^{\prime} \backslash i} m_{j} p_{j} H_{j}}\right), \forall i \in \mathcal{N}^{\prime}\\T_{i}^{t}=\frac{D_{i}}{R_{i}},\forall i\in\mathcal{N}^{\prime}\\T_{i}^{m}=\frac{D_{i}X_{i}}{f_{i}},\forall i\in\mathcal{N}'\\E_i^m=k_1f_i^3T_i^m,\forall i\in\mathcal{N}'\\P_i^m=\frac{k_2}{T_i^m},\forall i\in\mathcal{N}^{\prime}\\F^{MSP}=\sum_{i\in\mathcal{N}^{\prime}}\left(c_2f_i-c_3E_i^m\right)-c_3E_0\\\begin{aligned} P_{i}^{o}& =1-e^{-\lambda(T_{i}^{o}+T_{i}^{s})} \\ &=1-e^{-\lambda(zD_{i}+T_{i}^{t})},\forall i\in\mathcal{N}^{\prime} \end{aligned} Fiminer=(w+αDi)Pim(1Pio)c1Eitc2fi,iNRi=Blog2(1+σ2+jN\imjpjHjpiHi),iNTit=RiDi,iNTim=fiDiXi,iNEim=k1fi3Tim,iNPim=Timk2,iNFMSP=iN(c2fic3Eim)c3E0Pio=1eλ(Tio+Tis)=1eλ(zDi+Tit),iN

二、粒子群优化算法求解上述问题

粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,灵感来源于鸟群觅食行为。在粒子群算法中,每个个体被称为粒子,它们通过在解空间中搜索来寻找最优解。粒子的位置表示解空间中的一个解,速度表示粒子在解空间中的搜索方向和速度。

算法描述如下:

  1. 初始化粒子群的位置和速度,以及每个粒子的个体最优解和全局最优解。
  2. 对于每个粒子,根据其当前位置和速度更新其下一时刻的位置和速度。
  3. 更新每个粒子的个体最优解和全局最优解。
  4. 重复步骤2和步骤3,直到满足停止条件(例如达到最大迭代次数或找到满意的解)。
    粒子的位置和速度的更新公式如下:
    v i j = w ⋅ v i j + c 1 ⋅ r 1 ⋅ ( p b e s t i j − x i j ) + c 2 ⋅ r 2 ⋅ ( g b e s t j − x i j ) v_{ij} = w \cdot v_{ij} + c_1 \cdot r_1 \cdot (pbest_{ij} - x_{ij})+ c_2 \cdot r_2 \cdot (gbest_{j} - x_{ij}) vij=wvij+c1r1(pbestijxij)+c2r2(gbestjxij)
    x i j = x i j + v i j x_{ij} = x_{ij} + v_{ij} xij=xij+vij
    其中, v i j v_{ij} vij表示粒子 i i i在维度 j j j上的速度, x i j x_{ij} xij表示粒子 i i i在维度 j j j上的位置, w w w是惯性权重, c 1 c_1 c1 c 2 c_2 c2是加速因子, r 1 r_1 r1 r 2 r_2 r2是随机数, p b e s t i j pbest_{ij} pbestij是粒子 i i i的个体最优解, g b e s t j gbest_{j} gbestj是全局最优解。

2.1部分MATLAB代码

close all
clear 
clc
dbstop if all error
t=1;
for NP=100:50:400
para = parametersetting(NP);
para.MaxFEs =10000;%最大迭代次数
Result(t)=Compute(NP,para);
t=t+1;
end
QQ=100:50:400;
LenG={};
StrCor={'r-','g--','b-.','c-','m--','k-.','y-'};
figure
for i=1:t-1
    plot(Result(i).FitCurve,StrCor{i},'linewidth',3)
    hold on
    LenG{i}=['N=' num2str(QQ(i))];
    Data(i)=Result(i).FitCurve(end);
end
legend(LenG)
xlabel('FEs')
ylabel('Token')

figure
bar(Data)
hold on
plot(Data,'r-o','linewidth',3)
set(gca,'xtick',1:1:t-1);
set(gca,'XTickLabel',LenG)
ylabel('Token')












2.2部分结果

当矿工数量为 100 150 200 250 300 350 400时:所有矿工的利润随迭代次数的变化如下图所示
在这里插入图片描述

在这里插入图片描述

当矿工数量为100 时,差分进化算法得到的最优策略

1.99336847413542	0.263906421194274
1.99775186559795	0.200868009539170
1.99970002117621	0.0648879435841947
1.99329300750250	0.708182408691192
1.99167730621739	0.184448209112073
1.99307440825028	0.0219822928789003
1.99690287754159	0.431027655563034
1.99810379619714	0.321020523744654
1.99917843966375	0.303423831282229
1.99821040767272	0.168667481958628
1.98597988697170	0.0905104567390803
1.98597988697170	0.601810916845292
1.99751134702339	0.0772846974434056
1.99568705660856	0.0123961079170779
1.99568705660856	0.0219822928789003
1.99939846871027	0.140219957587819
1.99751134702339	0.0643466460987961
1.99106922984091	0.0744274764339868
1.99026780288433	0.323053852649518
1.99505374958257	0.391381227036939
1.99026780288433	0.0386190647662533
1.99434630983491	0.429606862856901
1.99656977746481	0.128509524908840
1.99306191995070	0.183351939597823
1.97120203302642	0.212539563416013
1.99775186559795	0.775693679569017
1.99445513254744	0.192745572626503
1.99810379619714	0.169565130152890
1.99821815723158	0.897463471823648
1.99967281380570	0.326738726430002
1.99917843966375	0.0772846974434056
1.99372726540238	0.282175086715631
1.99990898569500	0.770430114847907
1.99939846871027	0.393387022348710
1.99911410714039	0.628600190012630
1.99568705660856	0.476489184273998
1.99990898569500	0.169885270977169
1.99751134702339	0.282175086715631
1.99917843966375	0.996515848471701
1.98597988697170	0.105646136580459
1.98272218969017	0.341104490954763
1.99879887123098	0.0317520782551498
1.99911410714039	0.0648879435841947
1.99879887123098	0.708642673799754
1.99544983849978	0.110774653298577
1.99659514375944	0.436449874089022
1.99810379619714	0.284920542802571
1.99632883457053	0.0135240586325804
1.99189629561473	0.237758849313252
1.99422406461229	0.153419877925178
1.98098435432889	0.0245609422587171
1.99881527354847	0.131281213896720
1.99026780288433	0.520228057289928
1.99394052110531	0.973262555548315
1.99676423845605	0.733200939841676
1.99044028306887	0.0655466091538162
1.99220895638217	0.452664096011519
1.99967281380570	0.0246004351885689
1.98445329993034	0.0436886868372558
1.99561719532673	0.669438197662487
1.99106922984091	0.181170901188179
1.42677752275849	0.373040997600060
1.99985642534854	0.331705389653114
1.98892588960286	0.0905104567390803
1.99570956990523	0.137594166655745
1.99712756572684	0.0116613052442916
1.99761096308758	0.544497810583091
1.99917843966375	0.548902353524135
1.99604812483103	0.363959215054892
1.97370585223207	0.140439965394089
1.99822126426888	0.997589743470599
1.99981673555970	0.295499797026614
1.99810379619714	0.215172418098537
1.99385290784048	0.0967351355395940
1.98340346121394	0.295499797026614
1.98727071334110	0.0967351355395940
1.99583409111883	0.486648050904735
1.99881239804121	0.0123961079170779
1.99216872486481	0.0402198248179052
1.98363807201375	0.307091606206465
1.98955999082794	0.0700201382389803
1.96299723560445	0.0285183328499066
1.99827326844249	0.424637580117837
1.97739702698326	0.131281213896720
1.99947192096666	0.280461726485366
1.99985642534854	0.273611346819215
1.99434630983491	0.295161528856059
1.99822126426888	0.175643326680012
1.99106922984091	0.0842005107607819
1.99712756572684	0.0905104567390803
1.99916981021124	0.703533039399715
1.98780310050454	0.0860507779189620
1.99630429608324	0.0547851285698672
1.99246990243466	0.0905104567390803
1.99026780288433	0.736166803643234
1.98756768629791	0.102405574723945
1.99782015511902	0.219598860973970
1.99751134702339	0.184448209112073
1.97511833252200	0.0256491037386021
1.99026780288433	0.0126780548450636

三、完整MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/353978.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

网站防护可以采用高防SCDN吗?

随着网络攻击日益复杂和频繁,网站安全已经成为业界的头等大事。在这个背景下,高防SCDN(高防御内容分发网络)作为一种强大的网络保护工具,正逐渐成为各类网站不可或缺的安全设施。很多人会问,网站防护可以采…

项目解决方案:4G/5G看交通数字化视频服务平台技术方案

目 录 1.总体描述 2.系统结构图 3.系统功能 3.1 信息交互 3.2 语音对讲 3.3 实时码流转换 3.4 流媒体集群和扩容 3.5 负载均衡 3.6 流媒体分发 3.7 流媒体点播 4.系统标准 4.1 流媒体传输 4.2 视频格式 4.3 质量标准 5.设备清单 1.总体描述 视频监控平…

【学术论文写作 笔记02】 鲁棒性实验写作的行文逻辑

文章目录 一、声明二、行文思路三、示例范文一范文二 一、声明 自己总结的,有问题望指正! 二、行文思路 为什么要做鲁棒性测试怎么做实验结论对结果的解释 三、示例 PPT 范文一 2022, TIM, “A Robust and Reliable Point Cloud Recognition Netw…

跟着cherno手搓游戏引擎【13】着色器(shader)

创建着色器类&#xff1a; shader.h:初始化、绑定和解绑方法&#xff1a; #pragma once #include <string> namespace YOTO {class Shader {public:Shader(const std::string& vertexSrc, const std::string& fragmentSrc);~Shader();void Bind()const;void Un…

Adobe ColdFusion 任意文件读取漏洞复现(CVE-2023-26361)

0x01 产品简介 Adobe ColdFusion是美国奥多比(Adobe)公司的一套快速应用程序开发平台。该平台包括集成开发环境和脚本语言。 0x02 漏洞概述 Adobe ColdFusion平台 filemanager.cfc接口存在任意文件读取漏洞,攻击者可通过该漏洞读取系统重要文件(如数据库配置文件、系统配…

56. 合并区间 - 力扣(LeetCode)

题目描述 以数组 intervals 表示若干个区间的集合&#xff0c;其中单个区间为 intervals[i] [starti, endi] 。请你合并所有重叠的区间&#xff0c;并返回 一个不重叠的区间数组&#xff0c;该数组需恰好覆盖输入中的所有区间 。 题目示例 输入&#xff1a;intervals [[1,3…

专有钉钉开发记录,及问题总结

先放几个专有钉钉开发文档 专有钉钉官网的开发指南 服务端(后端)api文档 前端api文档 前端开发工具下载地址 小程序配置文件下载地址 后端SDK包下载地址 专有钉钉域名是openplatform.dg-work.cn 开发记录 开发专有钉钉时有时会遇到要使用钉钉的api&#xff1b;通过 my 的方…

分布式id-雪花算法

一、雪花算法介绍 Snowflake&#xff0c;雪花算法是有Twitter开源的分布式ID生成算法&#xff0c;以划分命名空间的方式将64bit位分割成了多个部分&#xff0c;每个部分都有具体的不同含义&#xff0c;在Java中64Bit位的整数是Long类型&#xff0c;所以在Java中Snowflake算法生…

台式电脑的ip地址在哪里找

在网络连接方面&#xff0c;IP地址是非常重要的信息&#xff0c;它是用于标识网络设备的唯一地址。对于台式电脑用户来说&#xff0c;了解自己设备的IP地址是非常有必要的&#xff0c;因为它可以帮助解决网络连接问题&#xff0c;进行远程访问和共享文件等功能。本文将指导读者…

spring整合mybatis的底层原理

spring整合mybatis的底层原理 原理&#xff1a; FactoryBean的自定义对象jdk动态代理Mapper接口对象 一、手写一个spring集成mybatis 目录结构&#xff1a; 1.1 入口类 public class Test {public static void main(String[] args) {AnnotationConfigApplicationContext co…

使用一个定时器(timer_fd)管理多个定时事件

使用一个定时器(timer_fd)管理多个定时事件 使用 timerfd_xxx 系列函数可以很方便的与 select、poll、epoll 等IO复用函数相结合&#xff0c;实现基于事件的定时器功能。大体上有两种实现思路&#xff1a; 为每个定时事件创建一个 timer_fd&#xff0c;绑定对应的定时回调函数…

7-205 神奇的循环

通过自己双手写出来的代码真的很有成就感 我们知道&#xff0c;在编程中&#xff0c;我们时常需要考虑到时间复杂度&#xff0c;特别是对于循环的部分。例如&#xff0c; 如果代码中出现 for(i1;i<n;i) OP ; 那么做了n次OP运算&#xff0c;如果代码中出现 for(i1;i<n; i)…

Android音量调节修改

前言 今日公司&#xff0c;安卓设备的音量显示不正常&#xff0c;让我来修复这个bug&#xff0c;现在已修复&#xff0c;做个博客&#xff0c;记录一下&#xff0c;以后碰到类似一下子就好解决。 Android音量调节相关 路径 frameworks\base\services\core\java\com\android…

LeetCode力扣题解(随机每日一题)——买钢笔和铅笔的方案数

题目链接 2240. 买钢笔和铅笔的方案数 - 力扣&#xff08;LeetCode&#xff09; 题目描述 给你一个整数 total &#xff0c;表示你拥有的总钱数。同时给你两个整数 cost1 和 cost2 &#xff0c;分别表示一支钢笔和一支铅笔的价格。你可以花费你部分或者全部的钱&#xff0c;…

LandrayOA内存调优 / JAVA内存调优 / Tomcat web.xml 超时时间调优实战

目录 一、背景说明 二、LandrayOA / Tomcat 内存调优 2.1 \win64\tomcat\conf\web.xml 文件调优 2.2 \win64\tomcat\bin\catalina64.bat 文件调优 一、背景说明 随着系统的使用时间越来越长&#xff0c;数据量越多&#xff0c;发现系统的有些功能越来越慢&…

C语言基础:写一个函数,输入一行字符,将此字符串最长的单词输出

方法一&#xff1a; #include<string.h> int find_longest(char line[])//把数组传过来 {int is_alphabetic(char word);int i 0;int length 0;//统计每个字符串的长度int max 0;//比max长就把值赋值给maxint place 0;//最长单词的起始位置int point;//每个字符串第…

机器学习的数据库积累........

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md ​​​​​​​ 另一个database:&#xff08;网址:Object Detection Made Easy with TensorFlow Hub: Tutorial&#xff09; Object Detection Made Easy with Ten…

Android底部导航栏创建——ViewPager + RadioGroup

Android底部导航栏有多种实现方式&#xff0c;本文详解其中的ViewPager RadioGroup方式的实现步骤。 我们先来看以下看一下最终做出的效果&#xff0c;使大家有个基本概念。 本结构特点&#xff1a; 1&#xff0c;ViewPager部分触摸左右滑动切换页面&#xff0c;RadioGroup部…

XXL-JOB

SpringTask这种任务只能放在单机节点下&#xff0c;就是说一个程序只跑一份的情况下&#xff0c;用SpringTask做定时任务没有什么问题&#xff0c;而且很好用&#xff0c;但是一旦这个程序需要运行多份&#xff0c;定时任务用SpringTask就不行了。多份代码重复执行了。 要解决…

React中文官网已经搬迁了,原网址内容将不再更新

注意1&#xff1a;React中文官网已经搬迁至-React 官方中文文档&#xff0c;原网址内容将不再更新 注意2&#xff1a;React官网已经将React的定义由“用于构建用户界面的 JavaScript 库”更改为“用于构建 Web 和原生交互界面的库”。