【RT-DETR有效改进】FasterNet一种跑起来的主干网络( 提高FPS和检测效率)

前言

大家好,这里是RT-DETR有效涨点专栏

本专栏的内容为根据ultralytics版本的RT-DETR进行改进,内容持续更新,每周更新文章数量3-10篇。

专栏以ResNet18、ResNet50为基础修改版本,同时修改内容也支持ResNet32、ResNet101和PPHGNet版本,其中ResNet为RT-DETR官方版本1:1移植过来的,参数量基本保持一致(误差很小很小),不同于ultralytics仓库版本的ResNet官方版本,同时ultralytics仓库的一些参数是和RT-DETR相冲的所以我也是会教大家调好一些参数和代码,真正意义上的跑ultralytics的和RT-DETR官方版本的无区别。

👑欢迎大家订阅本专栏,一起学习RT-DETR👑   

 一、本文介绍

本文给大家带来的改进机制是FasterNet网络,将其用来替换我们的特征提取网络,其旨在提高计算速度而不牺牲准确性,特别是在视觉任务中。它通过一种称为空洞卷积(PConv)的新技术来减少冗余计算和内存访问。这种方法使得FasterNet在多种设备上运行速度比其他网络快得多,同时在各种视觉任务中保持高准确率。经过我的实验该主干网络确实能够涨点在大中小三种物体检测上,同时该主干网络也提供多种版本,大家可以在源代码中进行修改版本的使用。本文通过介绍其主要框架原理,然后教大家如何添加该网络结构到网络模型中。

推荐指数:⭐⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐⭐

专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR     

目录

 一、本文介绍

二、FasterNet原理

2.1 FasterNet的基本原理

2.2 部分卷积

2.3 加速神经网络

三、FasterNet的核心代码

四、手把手教你添加FasterNet网络结构

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四

4.5 修改五

4.6 修改六

4.7 修改七 

4.8 修改八

4.9 RT-DETR不能打印计算量问题的解决

4.10 可选修改

五、FasterNet的yaml文件

5.1 yaml文件

5.2 运行文件

5.3 成功训练截图

六、全文总结


二、FasterNet原理

 论文地址:官方论文地址

 代码地址:官方代码地址


2.1 FasterNet的基本原理

FasterNet是一种高效的神经网络架构,旨在提高计算速度而不牺牲准确性,特别是在视觉任务中。它通过一种称为部分卷积(PConv)的新技术来减少冗余计算和内存访问。这种方法使得FasterNet在多种设备上运行速度比其他网络快得多,同时在各种视觉任务中保持高准确率。例如,FasterNet在ImageNet-1k数据集上的表现超过了其他模型,如MobileViT-XXS,展现了其在速度和准确度方面的优势。

FasterNet的基本原理可以总结为以下几点:

1. 部分卷积(PConv): FasterNet引入了部分卷积(PConv),这是一种新型的卷积方法,它通过只处理输入通道的一部分来减少计算量和内存访问。

2. 加速神经网络: FasterNet利用PConv的优势,实现了在多种设备上比其他现有神经网络更快的运行速度,同时保持了较高的准确度。

下面为大家展示的是FasterNet的整体架构

它包括四个层次化的阶段,每个阶段由一系列FasterNet块组成,并由嵌入或合并层开头。最后三层用于特征分类。在每个FasterNet块中,PConv层之后是两个点状卷积(PWConv)层。为了保持特征多样性并实现更低的延迟,仅在中间层之后放置了归一化和激活层


2.2 部分卷积

部分卷积(PConv)是一种卷积神经网络中的操作,旨在提高计算效率。它通过只在输入特征图的一部分上执行卷积操作,而非传统卷积操作中的全面应用。这样,PConv可以减少不必要的计算和内存访问,因为它忽略了输入中认为是冗余的部分。这种方法特别适合在资源有限的设备上运行深度学习模型,因为它可以在不牺牲太多性能的情况下,显著降低计算需求。

下面我为大家展示了FasterNet中的部分卷积(PConv)与传统卷积和深度卷积/分组卷积的比较

PConv通过仅对输入通道的一小部分应用滤波器,同时保持其余通道不变,实现了快速和高效的特性提取。PConv的计算复杂度(FLOPs)低于常规卷积,但高于深度卷积/分组卷积,这样在减少计算资源的同时提高了运算性能。


2.3 加速神经网络

加速神经网络主要通过优化计算路径、减少模型大小和复杂性、提高操作效率,以及使用高效的硬件实现等方式来降低模型的推理时间。这些方法包括简化网络层使用更快的激活函数采用量化技术浮点运算转换为整数运算,以及使用特殊的算法来减少内存访问次数等。通过这些策略,可以在不损害模型准确性的前提下,使神经网络能够更快地处理数据和做出预测。


三、FasterNet的核心代码

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import torch
import torch.nn as nn
from timm.models.layers import DropPath, trunc_normal_
from functools import partial
from typing import List
from torch import Tensor
import copy
import os


class Partial_conv3(nn.Module):
    def __init__(self, dim, n_div, forward):
        super().__init__()
        self.dim_conv3 = dim // n_div
        self.dim_untouched = dim - self.dim_conv3
        self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False)

        if forward == 'slicing':
            self.forward = self.forward_slicing
        elif forward == 'split_cat':
            self.forward = self.forward_split_cat
        else:
            raise NotImplementedError

    def forward_slicing(self, x: Tensor) -> Tensor:
        # only for inference
        x = x.clone()   # !!! Keep the original input intact for the residual connection later
        x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])

        return x

    def forward_split_cat(self, x: Tensor) -> Tensor:
        # for training/inference
        x1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)
        x1 = self.partial_conv3(x1)
        x = torch.cat((x1, x2), 1)

        return x


class MLPBlock(nn.Module):

    def __init__(self,
                 dim,
                 n_div,
                 mlp_ratio,
                 drop_path,
                 layer_scale_init_value,
                 act_layer,
                 norm_layer,
                 pconv_fw_type
                 ):

        super().__init__()
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.n_div = n_div

        mlp_hidden_dim = int(dim * mlp_ratio)

        mlp_layer: List[nn.Module] = [
            nn.Conv2d(dim, mlp_hidden_dim, 1, bias=False),
            norm_layer(mlp_hidden_dim),
            act_layer(),
            nn.Conv2d(mlp_hidden_dim, dim, 1, bias=False)
        ]

        self.mlp = nn.Sequential(*mlp_layer)

        self.spatial_mixing = Partial_conv3(
            dim,
            n_div,
            pconv_fw_type
        )

        if layer_scale_init_value > 0:
            self.layer_scale = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
            self.forward = self.forward_layer_scale
        else:
            self.forward = self.forward

    def forward(self, x: Tensor) -> Tensor:
        shortcut = x
        x = self.spatial_mixing(x)
        x = shortcut + self.drop_path(self.mlp(x))
        return x

    def forward_layer_scale(self, x: Tensor) -> Tensor:
        shortcut = x
        x = self.spatial_mixing(x)
        x = shortcut + self.drop_path(
            self.layer_scale.unsqueeze(-1).unsqueeze(-1) * self.mlp(x))
        return x


class BasicStage(nn.Module):

    def __init__(self,
                 dim,
                 depth,
                 n_div,
                 mlp_ratio,
                 drop_path,
                 layer_scale_init_value,
                 norm_layer,
                 act_layer,
                 pconv_fw_type
                 ):

        super().__init__()

        blocks_list = [
            MLPBlock(
                dim=dim,
                n_div=n_div,
                mlp_ratio=mlp_ratio,
                drop_path=drop_path[i],
                layer_scale_init_value=layer_scale_init_value,
                norm_layer=norm_layer,
                act_layer=act_layer,
                pconv_fw_type=pconv_fw_type
            )
            for i in range(depth)
        ]

        self.blocks = nn.Sequential(*blocks_list)

    def forward(self, x: Tensor) -> Tensor:
        x = self.blocks(x)
        return x


class PatchEmbed(nn.Module):

    def __init__(self, patch_size, patch_stride, in_chans, embed_dim, norm_layer):
        super().__init__()
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_stride, bias=False)
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = nn.Identity()

    def forward(self, x: Tensor) -> Tensor:
        x = self.norm(self.proj(x))
        return x


class PatchMerging(nn.Module):

    def __init__(self, patch_size2, patch_stride2, dim, norm_layer):
        super().__init__()
        self.reduction = nn.Conv2d(dim, 2 * dim, kernel_size=patch_size2, stride=patch_stride2, bias=False)
        if norm_layer is not None:
            self.norm = norm_layer(2 * dim)
        else:
            self.norm = nn.Identity()

    def forward(self, x: Tensor) -> Tensor:
        x = self.norm(self.reduction(x))
        return x


class FasterNet(nn.Module):

    def __init__(self,
                 in_chans=3,
                 num_classes=1000,
                 embed_dim=96,
                 depths=(1, 2, 8, 2),
                 mlp_ratio=2.,
                 n_div=4,
                 patch_size=4,
                 patch_stride=4,
                 patch_size2=2,  # for subsequent layers
                 patch_stride2=2,
                 patch_norm=True,
                 feature_dim=1280,
                 drop_path_rate=0.1,
                 layer_scale_init_value=0,
                 norm_layer='BN',
                 act_layer='RELU',
                 fork_feat=True,
                 init_cfg=None,
                 pretrained=None,
                 pconv_fw_type='split_cat',
                 **kwargs):
        super().__init__()

        if norm_layer == 'BN':
            norm_layer = nn.BatchNorm2d
        else:
            raise NotImplementedError

        if act_layer == 'GELU':
            act_layer = nn.GELU
        elif act_layer == 'RELU':
            act_layer = partial(nn.ReLU, inplace=True)
        else:
            raise NotImplementedError

        if not fork_feat:
            self.num_classes = num_classes
        self.num_stages = len(depths)
        self.embed_dim = embed_dim
        self.patch_norm = patch_norm
        self.num_features = int(embed_dim * 2 ** (self.num_stages - 1))
        self.mlp_ratio = mlp_ratio
        self.depths = depths

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            patch_size=patch_size,
            patch_stride=patch_stride,
            in_chans=in_chans,
            embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None
        )

        # stochastic depth decay rule
        dpr = [x.item()
               for x in torch.linspace(0, drop_path_rate, sum(depths))]

        # build layers
        stages_list = []
        for i_stage in range(self.num_stages):
            stage = BasicStage(dim=int(embed_dim * 2 ** i_stage),
                               n_div=n_div,
                               depth=depths[i_stage],
                               mlp_ratio=self.mlp_ratio,
                               drop_path=dpr[sum(depths[:i_stage]):sum(depths[:i_stage + 1])],
                               layer_scale_init_value=layer_scale_init_value,
                               norm_layer=norm_layer,
                               act_layer=act_layer,
                               pconv_fw_type=pconv_fw_type
                               )
            stages_list.append(stage)

            # patch merging layer
            if i_stage < self.num_stages - 1:
                stages_list.append(
                    PatchMerging(patch_size2=patch_size2,
                                 patch_stride2=patch_stride2,
                                 dim=int(embed_dim * 2 ** i_stage),
                                 norm_layer=norm_layer)
                )

        self.stages = nn.Sequential(*stages_list)

        self.fork_feat = fork_feat

        self.forward = self.forward_det
        # add a norm layer for each output
        self.out_indices = [0, 2, 4, 6]
        for i_emb, i_layer in enumerate(self.out_indices):
            if i_emb == 0 and os.environ.get('FORK_LAST3', None):
                raise NotImplementedError
            else:
                layer = norm_layer(int(embed_dim * 2 ** i_emb))
            layer_name = f'norm{i_layer}'
            self.add_module(layer_name, layer)

        self.apply(self.cls_init_weights)
        self.init_cfg = copy.deepcopy(init_cfg)
        if self.fork_feat and (self.init_cfg is not None or pretrained is not None):
            self.init_weights()
        self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
    def cls_init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, (nn.Conv1d, nn.Conv2d)):
            trunc_normal_(m.weight, std=.02)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, (nn.LayerNorm, nn.GroupNorm)):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)



    def forward_det(self, x: Tensor) -> Tensor:
        # output the features of four stages for dense prediction
        x = self.patch_embed(x)
        outs = []
        for idx, stage in enumerate(self.stages):
            x = stage(x)
            if self.fork_feat and idx in self.out_indices:
                norm_layer = getattr(self, f'norm{idx}')
                x_out = norm_layer(x)
                outs.append(x_out)
        return outs


if __name__ == "__main__":

    # Generating Sample image
    image_size = (1, 3, 640, 640)
    image = torch.rand(*image_size)

    # Model
    model = FasterNet()

    out = model(image)
    print(len(out))

四、手把手教你添加FasterNet网络结构

 下面教大家如何修改该网络结构,主干网络结构的修改步骤比较复杂,我也会将task.py文件上传到CSDN的文件中,大家如果自己修改不正确,可以尝试用我的task.py文件替换你的,然后只需要修改其中的第1、2、3、5步即可。

⭐修改过程中大家一定要仔细⭐


4.1 修改一

首先我门中到如下“ultralytics/nn”的目录,我们在这个目录下在创建一个新的目录,名字为'Addmodules'(此文件之后就用于存放我们的所有改进机制),之后我们在创建的目录内创建一个新的py文件复制粘贴进去 ,可以根据文章改进机制来起,这里大家根据自己的习惯命名即可。


4.2 修改二 

第二步我们在我们创建的目录内创建一个新的py文件名字为'__init__.py'(只需要创建一个即可),然后在其内部导入我们本文的改进机制即可,其余代码均为未发大家没有不用理会!


4.3 修改三 

第三步我门中到如下文件'ultralytics/nn/tasks.py'然后在开头导入我们的所有改进机制(如果你用了我多个改进机制,这一步只需要修改一次即可)


4.4 修改四

添加如下两行代码!!!


4.5 修改五

找到七百多行大概把具体看图片,按照图片来修改就行,添加红框内的部分,注意没有()只是函数名(此处我的文件里已经添加很多了后期都会发出来,大家没有的不用理会即可)。

        elif m in {自行添加对应的模型即可,下面都是一样的}:
            m = m(*args)
            c2 = m.width_list  # 返回通道列表
            backbone = True


4.6 修改六

用下面的代码替换红框内的内容。 

if isinstance(c2, list):
    m_ = m
    m_.backbone = True
else:
    m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
    t = str(m)[8:-2].replace('__main__.', '')  # module type
m.np = sum(x.numel() for x in m_.parameters())  # number params
m_.i, m_.f, m_.type = i + 4 if backbone else i, f, t  # attach index, 'from' index, type
if verbose:
    LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}')  # print
save.extend(
    x % (i + 4 if backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
layers.append(m_)
if i == 0:
    ch = []
if isinstance(c2, list):
    ch.extend(c2)
    if len(c2) != 5:
        ch.insert(0, 0)
else:
    ch.append(c2)


4.7 修改七 

修改七这里非常要注意,不是文件开头YOLOv8的那predict,是400+行的RTDETR的predict!!!初始模型如下,用我给的代码替换即可!!!

代码如下->

 def predict(self, x, profile=False, visualize=False, batch=None, augment=False, embed=None):
        """
        Perform a forward pass through the model.

        Args:
            x (torch.Tensor): The input tensor.
            profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.
            visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.
            batch (dict, optional): Ground truth data for evaluation. Defaults to None.
            augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.
            embed (list, optional): A list of feature vectors/embeddings to return.

        Returns:
            (torch.Tensor): Model's output tensor.
        """
        y, dt, embeddings = [], [], []  # outputs
        for m in self.model[:-1]:  # except the head part
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                if len(x) != 5:  # 0 - 5
                    x.insert(0, None)
                for index, i in enumerate(x):
                    if index in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                x = x[-1]  # 最后一个输出传给下一层
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
            if embed and m.i in embed:
                embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flatten
                if m.i == max(embed):
                    return torch.unbind(torch.cat(embeddings, 1), dim=0)
        head = self.model[-1]
        x = head([y[j] for j in head.f], batch)  # head inference
        return x

4.8 修改八

我们将下面的s用640替换即可,这一步也是部分的主干可以不修改,但有的不修改就会报错,所以我们还是修改一下。


4.9 RT-DETR不能打印计算量问题的解决

计算的GFLOPs计算异常不打印,所以需要额外修改一处, 我们找到如下文件'ultralytics/utils/torch_utils.py'文件内有如下的代码按照如下的图片进行修改,大家看好函数就行,其中红框的640可能和你的不一样, 然后用我给的代码替换掉整个代码即可。

def get_flops(model, imgsz=640):
    """Return a YOLO model's FLOPs."""
    try:
        model = de_parallel(model)
        p = next(model.parameters())
        # stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32  # max stride
        stride = 640
        im = torch.empty((1, 3, stride, stride), device=p.device)  # input image in BCHW format
        flops = thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1E9 * 2 if thop else 0  # stride GFLOPs
        imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz]  # expand if int/float
        return flops * imgsz[0] / stride * imgsz[1] / stride  # 640x640 GFLOPs
    except Exception:
        return 0


4.10 可选修改

有些读者的数据集部分图片比较特殊,在验证的时候会导致形状不匹配的报错,如果大家在验证的时候报错形状不匹配的错误可以固定验证集的图片尺寸,方法如下 ->

找到下面这个文件ultralytics/models/yolo/detect/train.py然后其中有一个类是DetectionTrainer class中的build_dataset函数中的一个参数rect=mode == 'val'改为rect=False


五、FasterNet的yaml文件

5.1 yaml文件

大家复制下面的yaml文件,然后通过我给大家的运行代码运行即可,RT-DETR的调参部分需要后面的文章给大家讲,现在目前免费给大家看这一部分不开放。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, FasterNet, []]  # 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 5 input_proj.2
  - [-1, 1, AIFI, [1024, 8]] # 6
  - [-1, 1, Conv, [256, 1, 1]]  # 7, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 8
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 9 input_proj.1
  - [[-2, -1], 1, Concat, [1]] # 10
  - [-1, 3, RepC3, [256, 0.5]]  # 11, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]   # 12, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 13
  - [2, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 14 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 15 cat backbone P4
  - [-1, 3, RepC3, [256, 0.5]]    # X3 (16), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]]   # 17, downsample_convs.0
  - [[-1, 12], 1, Concat, [1]]  # 18 cat Y4
  - [-1, 3, RepC3, [256, 0.5]]    # F4 (19), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]   # 20, downsample_convs.1
  - [[-1, 7], 1, Concat, [1]]  # 21 cat Y5
  - [-1, 3, RepC3, [256, 0.5]]    # F5 (22), pan_blocks.1

  - [[16, 19, 22], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 3]]  # Detect(P3, P4, P5)


5.2 运行文件

大家可以创建一个train.py文件将下面的代码粘贴进去然后替换你的文件运行即可开始训练。

import warnings
from ultralytics import RTDETR
warnings.filterwarnings('ignore')

if __name__ == '__main__':
    model = RTDETR('替换你想要运行的yaml文件')
    # model.load('') # 可以加载你的版本预训练权重
    model.train(data=r'替换你的数据集地址即可',
                cache=False,
                imgsz=640,
                epochs=72,
                batch=4,
                workers=0,
                device='0',
                project='runs/RT-DETR-train',
                name='exp',
                # amp=True
                )


5.3 成功训练截图

下面是成功运行的截图(确保我的改进机制是可用的),已经完成了有1个epochs的训练,图片太大截不全第2个epochs了。 


六、全文总结

从今天开始正式开始更新RT-DETR剑指论文专栏,本专栏的内容会迅速铺开,在短期呢大量更新,价格也会乘阶梯性上涨,所以想要和我一起学习RT-DETR改进,可以在前期直接关注,本文专栏旨在打造全网最好的RT-DETR专栏为想要发论文的家进行服务。

 专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/346347.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java中的HTTPS通信

在Java中实现HTTPS通信&#xff0c;主要涉及到SSL/TLS协议的使用&#xff0c;用于提供数据传输的安全性。下面我们将深入探讨如何使用Java进行HTTPS通信。 一、基本概念 HTTPS&#xff0c;全称为Hypertext Transfer Protocol Secure&#xff0c;是HTTP的安全版本。它使用SSL/…

代码随想录 Leetcode144/94/145 二叉树的前/中/后序遍历

题目&#xff1a; 前&#xff1a; 中&#xff1a; 后&#xff1a; 代码&#xff08;首刷自解 2024年1月24日&#xff09;&#xff1a; //前序遍历&#xff0c;递归 class Solution { public:void funcOfRecursion(TreeNode* cur, vector<int>& vec) {if (cur null…

使用frp透传软件搭建本地运行的私有邮箱服务器

起因&#xff1a;随着我公司在线应用软件的增多&#xff0c;比如wordpress、 next cloud、SuitCRM 、iFair等&#xff0c;许多场合都要求填写邮箱地址&#xff0c;绑定邮箱。因为不想将过多的数据存储于第三方空间&#xff0c;因此考虑在公司局域网内搭建一个私有的电子邮箱服务…

嵌入式软件工程师如何快速成长

今天和大家分享一下&#xff0c;程序员如何独挡一面这个话题&#xff0c;这是一个很大的话题&#xff0c;我把他分成三部分来谈&#xff1a; 一、需求转换的能力或者叫理解需求的能力&#xff1b; 二、分配时间的能力&#xff1b; 三、开发质量的问题&#xff1b; 我为什么…

全新UI基于Thinkphp的最新自助打印系统/云打印小程序源码/附教程

这是一款全新的基于Thinkphp的最新自助打印系统&#xff0c;最新UI界面设计的云打印小程序源码&#xff0c;带有简单的教程。 源码下载&#xff1a;YISHEN源码网&#xff08;ms3.ishenglu.c&#xff09;om

Java-反射-注解-动态代理

二、反射 翻译成人话就是&#xff1a;反射技术&#xff0c;指的是加载类的字节码到内存&#xff0c;并以编程的方法解刨出类中的各个成分&#xff08;成员变量、方法、构造器等&#xff09;。 反射有啥用呢&#xff1f;其实反射是用来写框架用的&#xff0c;但是现阶段同学们对…

RK3588平台开发系列讲解(视频篇)RKMedia框架

文章目录 一、 RKMedia框架介绍二、 RKMedia框架API三、 视频处理流程四、venc 测试案例沉淀、分享、成长,让自己和他人都能有所收获!😄 📢RKMedia是RK提供的一种多媒体处理方案,可实现音视频捕获、音视频输出、音视频编解码等功能。 一、 RKMedia框架介绍 功能: VI(输…

碳排放预测 | Matlab实现LSTM多输入单输出未来碳排放预测,预测新数据

碳排放预测 | Matlab实现LSTM多输入单输出未来碳排放预测&#xff0c;预测新数据 目录 碳排放预测 | Matlab实现LSTM多输入单输出未来碳排放预测&#xff0c;预测新数据预测效果基本描述程序设计参考资料 预测效果 基本描述 1.Matlab实现LSTM长短期记忆神经网络多输入单输出未来…

Sentinel-1 扩展时序注释数据集 (ETAD)的查询和下载

概述 Sentinel-1的扩展计时注释数据集&#xff08;ETAD&#xff09;是ESA&#xff08;DLR作为承包商&#xff09;开发的新辅助产品&#xff0c;为用户提供校正&#xff0c;将Sentinel-1 SLC图像的几何精度提高到厘米级别。该产品包含分析就绪层&#xff0c;用于消除大气路径延…

Linux系统中虚拟文件系统原理与方法

在 Unix 的世界里&#xff0c;有句很经典的话&#xff1a;一切对象皆是文件。这句话的意思是说&#xff0c;可以将 Unix 操作系统中所有的对象都当成文件&#xff0c;然后使用操作文件的接口来操作它们。Linux 作为一个类 Unix 操作系统&#xff0c;也努力实现这个目标。 虚拟文…

三维重建(6)--多视图几何

目录 一、运动恢复问题&#xff08;SfM&#xff09; 二、欧式结构恢复问题 1、概述 2、算法流程 3、本质矩阵分解 4、欧式结构恢复歧义 三、仿射结构恢复问题 1、概述 2、因式分解法 3、仿射结构恢复歧义 四、透视结构恢复问题 1、概述 2、透视结构恢复歧义 3…

【数据结构与算法】之字符串系列-20240125

字符串系列 一、520. 检测大写字母二、面试题 01.01. 判定字符是否唯一三、面试题 01.02. 判定是否互为字符重排四、面试题 01.03. URL化五、面试题 01.04. 回文排列六、面试题 01.09. 字符串轮转 一、520. 检测大写字母 简单 我们定义&#xff0c;在以下情况时&#xff0c;单…

分布式应用程序设计项目管理

1. 项目的定义 项目是一种特定的、新颖的行动&#xff0c;目的是以有条不紊、逐步的方式构建一个尚未存在确切对应物的未来现实。它是对精心制定的需求的回应&#xff0c;旨在满足业主的需要。项目包括一个可能是物理或智力的目标&#xff0c;并且需要使用给定的资源来执行一系…

【SD】sadtalk

下载地址&#xff1a; 123&#xff1a;https://www.123pan.com/s/VzULVv-0OXX.html 提取码:3KhD 百度&#xff1a; https://pan.baidu.com/share/init?surlRB9oTmlbIV0pg1Th-Tdd4Q 提取码: uk87 效果不是很好&#xff0c;适合小图片。推荐&#xff1a;heygen 参考设置&…

H12-821_111

111.如图所示&#xff0c;R2传递10.0.1.0/24的路由给R3时&#xff0c;该路由的Next_Hop地址是以下哪一个&#xff1f; A.10.0.23.3 B.10.0.23.2 C.10.0.12.1 D.10.0.12.2 答案&#xff1a;C 注释&#xff1a; 这道题想给大家强调的是R1发送路由给R2时&#xff0c;下一跳地址是…

redis整合

一.redis的发布订阅 什么 是发布和订阅 Redis 发布订阅 (pub/sub) 是一种消息通信模式&#xff1a;发送者 (pub) 发送消息&#xff0c;订阅者 (sub) 接收消息。 Redis 客户端可以订阅任意数量的频道。 1、Redis的发布和订阅 客户端订阅频道发布的消息 频道发布消息 订阅者就可以…

C#从网址上读取json数据

需求&#xff1a;从客户给的网址中读取json格式的数据。 找了好多资料&#xff0c;都不太好使&#xff0c;看到了一篇很有帮助的文章。以下大部分内容和这篇找到的文章近似。太不容易了&#xff0c;同时也感谢这篇文章的作者心所欲。 https://www.cnblogs.com/zoujinhua/p/10…

先进车辆驾驶舱系统的强大网络安全协议

近年来&#xff0c;车辆驾驶舱系统发展迅速&#xff0c;融入了导航、娱乐和车辆性能监控系统等先进技术。随着驾驶舱变得更加互联和依赖软件&#xff0c;它们也变得更容易受到网络安全威胁。实施强大的网络安全协议对于保护驾驶员和乘客以及保持车辆运行的完整性至关重要。 本…

springboot124中药实验管理系统设计与实现

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的中药实验管理系统设计与实现 适用于计算机类毕业设计&#xff0c;课程设计参考与学习用途。仅供学习参考&#xff0c; 不得用于商业或者非法用途&#xff0c;否则&#xff0c;一切后果请用户自负。 看运行截图看 第五章…

书生·浦语大模型--第五节课笔记作业--LMDeploy 大模型量化部署实践

文章目录 大模型部署背景LMDeploy简介动手实践创建环境服务部署在线转换离线转换TurboMind推理API服务Gradio 作为前端 Demo演示TurboMind 服务作为后端TurboMind 推理作为后端 作业 大模型部署背景 部署&#xff1a;将训练好的模型在特定软硬件环境中启动的过程 挑战&#x…