智能机器人与旋量代数(12)

Chapt 4. 旋量代数在机器人学中的应用

4.1 串联机器人正运动学的指数积(PoE, Product of Exponetial)公式

4.1.1 回顾:机器人正运动学的Denavit-Hartenberg (D-H)参数公式

D-H 建模法: D-H 建模方法是由 Denavit 和 Hartenberg (ASME, 1955) 提出的一种建模方法,主要用在机器人运动学上。此方法在机器人的每个连杆上建立一个坐标系,通过齐次坐标变换实现两个连杆上的坐标变换,建立多连杆串联系统中首末坐标系的变换关系。
在这里插入图片描述

D-H 建模方法的几个要点如下:

a. 建立连杆坐标系;

b.确定四个参数 α \alpha α, a a a, d d d, θ \theta θ

c. 列D-H参数表;

d.由参数表得到变换矩阵;

D-H 建模方法中,每个连杆使用 4 个参数 α \alpha α, a a a, d d d, θ \theta θ 来描述,2 个描述连杆本身,另外 2 个描述与相邻连杆的位姿(连接或几何关系)。

对于转动关节,其中 θ \theta θ 为关节变量,其他三个参数固定不变,为连杆参数;对于移动关节, d d d 为关节变量,其他三个为关节参数。

根据连杆坐标系和关节对应关系的不同,D-H 建模法可以分为传统 D-H (Classic DH) 和改进 D-H (Modified DH),二者的主要区别如下表所示。

区别Classic D-HModified D-H
连杆固定坐标系的位置后一个关节坐标系前一个关节坐标系
X X X 轴的确定方式当前坐标系 Z Z Z 轴和前一个坐标系 Z Z Z 轴的向量积后一个坐标系 Z Z Z 轴与当前坐标系 Z Z Z 轴的向量积
坐标系间的参数变换顺序 θ \theta θ, d d d, a a a, α \alpha α α \alpha α, a a a, θ \theta θ, d d d

Classic D-H:

Classic DH 的关节和坐标系关系中各个参数的含义如下:

θ i \theta_{i} θi: X i − 1 X_{i-1} Xi1 X i X_{i} Xi Z i − 1 Z_{i-1} Zi1旋转的角度;

d i d_{i} di: X i − 1 X_{i-1} Xi1 X i X_{i} Xi 沿 Z i − 1 Z_{i-1} Zi1 方向的距离;

a i a_{i} ai Z i − 1 Z_{i-1} Zi1 Z i Z_{i} Zi 沿 X i − 1 X_{i-1} Xi1 方向的距离;

α i \alpha_{i} αi: Z i − 1 Z_{i-1} Zi1 Z i Z_{i} Zi X i − 1 X_{i-1} Xi1 旋转的角度

坐标系 O i − 1 O_{i-1} Oi1 与关节 i i i 对齐,其 D-H 参数矩阵为:

i i − 1 T = [ cos ⁡ θ i − sin ⁡ θ i cos ⁡ α i sin ⁡ θ i sin ⁡ α i a i cos ⁡ θ i sin ⁡ θ i cos ⁡ θ i cos ⁡ α i − cos ⁡ θ i sin ⁡ α i a i sin ⁡ θ i 0 sin ⁡ α i cos ⁡ α i d i 0 0 0 1 ] _{i}^{i-1}T = \begin{bmatrix} \cos{\theta_{i}} & -\sin{\theta_{i}} \cos{\alpha_{i}} & \sin{\theta_{i}} \sin{\alpha_{i}} & a_{i} \cos{\theta_{i}} \\ \sin{\theta_{i}} & \cos{\theta_{i}} \cos{\alpha_{i}} & -\cos{\theta_{i}} \sin{\alpha_{i}} & a_{i} \sin{\theta_{i}} \\ 0 & \sin{\alpha_{i}} & \cos{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix} ii1T= cosθisinθi00sinθicosαicosθicosαisinαi0sinθisinαicosθisinαicosαi0aicosθiaisinθidi1

Modified DH:

Modified D-H 的关节和坐标系关系中各个参数的含义如下:

α i − 1 \alpha_{i-1} αi1 Z i − 1 Z_{i-1} Zi1 Z i Z_{i} Zi X i − 1 X_{i-1} Xi1 旋转的角度;

a i − 1 a_{i-1} ai1 Z i − 1 Z_{i-1} Zi1 Z i Z_{i} Zi 沿 X i − 1 X_{i-1} Xi1 方向的距离;

θ i \theta_{i} θi X i − 1 X_{i-1} Xi1 X i X_{i} Xi Z i Z_{i} Zi 旋转的角度;

d i d_{i} di X i − 1 X_{i-1} Xi1 X i X_{i} Xi沿 Z i Z_{i} Zi 方向的距离。

坐标系 O i − 1 O_{i-1} Oi1 与关节 i − 1 i-1 i1 对齐,其 D-H 参数矩阵为:
在这里插入图片描述

i i − 1 T = [ cos ⁡ θ i − sin ⁡ θ i 0 a i − 1 sin ⁡ θ i cos ⁡ α i − 1 cos ⁡ θ i cos ⁡ α i − 1 − sin ⁡ α i − 1 − d i sin ⁡ α i − 1 sin ⁡ θ i sin ⁡ α i − 1 cos ⁡ θ i sin ⁡ α i − 1 cos ⁡ α i − 1 d i cos ⁡ α i − 1 0 0 0 1 ] _{i}^{i-1}T = \begin{bmatrix} \cos{\theta_{i}} & -\sin{\theta_{i}} & 0 & a_{i-1} \\ \sin{\theta_{i}} \cos{\alpha_{i-1}} & \cos{\theta_{i}} \cos{\alpha_{i-1}} & -\sin{\alpha_{i-1}} & -d_{i} \sin{\alpha_{i-1}} \\ \sin{\theta_{i}} \sin{\alpha_{i-1}} &\cos{\theta_{i}} \sin{\alpha_{i-1}} & \cos{\alpha_{i-1}} & d_{i} \cos{\alpha_{i-1}} \\ 0 & 0 & 0 & 1 \end{bmatrix} ii1T= cosθisinθicosαi1sinθisinαi10sinθicosθicosαi1cosθisinαi100sinαi1cosαi10ai1disinαi1dicosαi11

Modified DH 克服了 Classic DH 在用于树型结构机器人时可能出现的问题,比较常用,故之后主要介绍这种方法,并使用该方法进行建模。

机械臂连杆坐标系的建立

建立机械臂连杆坐标系的步骤:

a. 确定各个关节轴和连杆,坐标系的 Z Z Z 轴沿关节轴线方向;

b. 找出相邻两关节轴线的交点或公垂线,用于确定坐标系 { i } \{i\} {i} 的原点:以关节轴 i i i i + 1 i+1 i+1 的交点或公垂线与关节轴 i i i 的交点为原点;

c. 确定 X X X 轴:两轴线相交时, X i ⃗ = ± Z i + 1 ⃗ × Z i ⃗ \vec{X_{i}} = \pm \vec{Z_{i+1}} \times \vec{Z_{i}} Xi =±Zi+1 ×Zi ;两轴线不相交时, X i X_{i} Xi 轴与公垂线重合,方向为 i i i i + 1 i+1 i+1

d. 右手定则确定 Y i Y_{i} Yi 轴;

e. 确定基坐标系 { 0 } \{0\} {0}:为了简化问题, Z 0 Z_0 Z0 通常与关节 1 的轴线方向重合,且当关节变量 1 为 0 时,坐标系 { 0 } \{0\} {0} { 1 } \{1\} {1} 重合;

f. 确定末端坐标系 { n } \{n\} {n}:对于转动关节, θ n = 0 \theta_n = 0 θn=0 时, X n X_n Xn X n − 1 X_{n-1} Xn1 方向相同,选取原点使 d n = 0 d_n = 0 dn=0;对于移动关节,取 X n X_n Xn 方向使 θ n = 0 \theta_n = 0 θn=0,当 d n = 0 d_n = 0 dn=0 时,取 X n − 1 X_{n-1} Xn1 X n X_n Xn 的交点为原点。

D-H 参数表

根据机械臂各个连杆间坐标系的关系,采用 Modified D-H 形式,得到的参数表如下。

i i i α i − 1 \alpha_{i-1} αi1 a i − 1 a_{i-1} ai1 θ i − 1 \theta_{i-1} θi1 d i d_{i} di θ \theta θ 的范围
1 0 ∘ 0^{\circ} 0 0 0 0 θ 1 \theta_{1} θ1 0 0 0 ( − 2 π 3 , 2 π 3 ) (-\frac{2 \pi}{3}, \frac{2 \pi}{3}) (32π,32π)
2 − 9 0 ∘ -90^{\circ} 90 a 1 a_{1} a1 θ 2 \theta_{2} θ2 0 0 0 ( − π 2 , 0 ) (-\frac{\pi}{2}, 0) (2π,0)
3 0 ∘ 0^{\circ} 0 a 2 a_{2} a2 θ 3 \theta_{3} θ3 0 0 0 ( − 2 π 3 , 2 π 3 ) (-\frac{2 \pi}{3}, \frac{2 \pi}{3}) (32π,32π)
4 0 ∘ 0^{\circ} 0 a 3 a_{3} a3 θ 4 \theta_{4} θ4 0 0 0 ( − 7 π 6 , π 6 ) (-\frac{7 \pi}{6}, \frac{\pi}{6}) (67π,6π)
5 − 9 0 ∘ -90^{\circ} 90 0 0 0 θ 5 \theta_{5} θ5 0 0 0 ( − 2 π 3 , 2 π 3 ) (-\frac{2 \pi}{3}, \frac{2 \pi}{3}) (32π,32π)

在这里插入图片描述

齐次变换矩阵

将 DH 参数表代入 Modified DH 的 DH 参数矩阵,可以得到各个坐标系间的齐次变换矩阵 1 0 T _{1}^{0}T 10T, 2 1 T _{2}^{1}T 21T, 3 2 T _{3}^{2}T 32T, 4 3 T _{4}^{3}T 43T 5 4 T _{5}^{4}T 54T 则可得基坐标系到末端坐标系的齐次变换矩阵:

5 0 T = 1 0 T 2 1 T 3 2 T 4 3 T 5 4 T = [ n x o x ; a x p x n y o y a y ; p y n z o z a z p z 0 0 0 1 ] _{5}^{0}T = {_{1}^{0}T} {_{2}^{1}T} {_{3}^{2}T} {_{4}^{3}T} {_{5}^{4}T} = \begin{bmatrix} n_{x} & o_{x} &;a_{x} & p_{x} \\ n_{y} & o_{y} & a_{y} &; p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} 50T=10T21T32T43T54T= nxnynz0oxoyoz0;axayaz0px;pypz1

其中,
[ p x p y p z ] T \begin{bmatrix} p_{x} & p_{y} & p_{z} \end{bmatrix}^T [pxpypz]T
为机械臂末端在基坐标系中的位置,
[ n x n y n z ] T \begin{bmatrix} n_{x} & n_{y} & n_{z} \end{bmatrix}^T [nxnynz]T
为机械臂末端坐标系 X X X 轴在基坐标系中的方向矢量,
[ o x o y o z ] T \begin{bmatrix} o_{x} & o_{y} & o_{z} \end{bmatrix}^T [oxoyoz]T
为机械臂末端坐标系 Y Y Y 轴在基坐标系中的方向矢量,
[ a x a y a z ] T \begin{bmatrix} a_{x} & a_{y} & a_{z} \end{bmatrix}^T [axayaz]T
为机械臂末端坐标系 Z Z Z 轴在基坐标系中的方向矢量。

代入 D-H 参数,可得
n x = s 1 s 5 + c 1 c 2 c 3 c 4 c 5 − c 1 c 2 c 5 s 3 s 4 − c 1 c 3 c 5 s 2 s 4 − c 1 c 4 c 5 s 2 s 3 n y = c 2 c 3 c 4 c 5 s 1 − c 1 s 5 − c 2 c 5 s 1 s 3 s 4 − c 3 c 5 s 1 s 2 s 4 − c 4 c 5 s 1 s 2 s 3 n z = c 5 s 2 s 3 s 4 − c 2 c 4 c 5 s 3 − c 3 c 4 c 5 s 2 − c 2 c 3 c 5 s 4 o x = c 5 s 1 − c 1 c 2 c 3 c 4 s 5 + c 1 c 2 s 3 s 4 s 5 + c 1 c 3 s 2 s 4 s 5 + c 1 c 4 s 2 s 3 s 5 o y = c 2 s 1 s 3 s 4 s 5 − c 2 c 3 c 4 s 1 s 5 − c 1 c 5 + c 3 s 1 s 2 s 4 s 5 + c 4 s 1 s 2 s 3 s 5 o z = c 2 c 3 s 4 s 5 + c 2 c 4 s 3 s 5 + c 3 c 4 s 2 s 5 − s 2 s 3 s 4 s 5 a x = c 1 s 2 s 3 s 4 − c 1 c 2 c 4 s 3 − c 1 c 3 c 4 s 2 − c 1 c 2 c 3 s 4 a y = s 1 s 2 s 3 s 4 − c 2 c 4 s 1 s 3 − c 3 c 4 s 1 s 2 − c 2 c 3 s 1 s 4 a z = c 2 s 3 s 4 + c 3 s 2 s 4 + c 4 s 2 s 3 − c 2 c 3 c 4 p x = a 1 c 1 + a 2 c 1 c 2 + a 3 c 1 c 2 c 3 − a 3 c 1 s 2 s 3 p y = a 1 s 1 + a 2 c 2 s 1 + a 3 c 2 c 3 s 1 − a 3 s 1 s 2 s 3 p z = − a 2 s 2 − a 3 c 2 s 3 − a 3 c 3 s 2 n_{x} = s_{1} s_{5} + c_{1} c_{2} c_{3} c_{4} c_{5} - c_{1} c_{2} c_{5} s_{3} s_{4} - c_{1} c_{3} c_{5} s_{2} s_{4} - c_{1} c_{4} c_{5} s_{2} s_{3} \\ n_{y} = c_{2} c_{3} c_{4} c_{5} s_{1} - c_{1} s_{5} - c_{2} c_{5} s_{1} s_{3} s_{4} - c_{3} c_{5} s_{1} s_{2} s_{4} - c_{4} c_{5} s_{1} s_{2} s_{3} \\ n_{z} = c_{5} s_{2} s_{3} s_{4} - c_{2} c_{4} c_{5} s_{3} - c_{3} c_{4} c_{5} s_{2} - c_{2} c_{3} c_{5} s_{4} \\ o_{x} = c_{5} s_{1} - c_{1} c_{2} c_{3} c_{4} s_{5} + c_{1} c_{2} s_{3} s_{4} s_{5} + c_{1} c_{3} s_{2} s_{4} s_{5} + c_{1} c_{4} s_{2} s_{3} s_{5} \\ o_{y} = c_{2} s_{1} s_{3} s_{4} s_{5} - c_{2} c_{3} c_{4} s_{1} s_{5} - c_{1} c_{5} + c_{3} s_{1} s_{2} s_{4} s_{5} + c_{4} s_{1} s_{2} s_{3} s_{5} \\ o_{z} = c_{2} c_{3} s_{4} s_{5} + c_{2} c_{4} s_{3} s_{5} + c_{3} c_{4} s_{2} s_{5} - s_{2} s_{3} s_{4} s_{5} \\ a_{x} = c_{1} s_{2} s_{3} s_{4} - c_{1} c_{2} c_{4} s_{3} - c_{1} c_{3} c_{4} s_{2} - c_{1} c_{2} c_{3} s_{4} \\ a_{y} = s_{1} s_{2} s_{3} s_{4} - c_{2} c_{4} s_{1} s_{3} - c_{3} c_{4} s_{1} s_{2} - c_{2} c_{3} s_{1} s_{4} \\ a_{z} = c_{2} s_{3} s_{4} + c_{3} s_{2} s_{4} + c_{4} s_{2} s_{3} - c_{2} c_{3} c_{4} \\ p_{x} = a_{1} c_{1} + a_{2} c_{1} c_{2} + a_{3} c_{1} c_{2} c_{3} - a_{3} c_{1} s_{2} s_{3} \\ p_{y} = a_{1} s_{1} + a_{2} c_{2} s_{1} + a_{3} c_{2} c_{3} s_{1} - a_{3} s_{1} s_{2} s_{3} \\ p_{z} = -a_{2} s_{2} - a_{3} c_{2} s_{3} - a_{3} c_{3} s_{2} nx=s1s5+c1c2c3c4c5c1c2c5s3s4c1c3c5s2s4c1c4c5s2s3ny=c2c3c4c5s1c1s5c2c5s1s3s4c3c5s1s2s4c4c5s1s2s3nz=c5s2s3s4c2c4c5s3c3c4c5s2c2c3c5s4ox=c5s1c1c2c3c4s5+c1c2s3s4s5+c1c3s2s4s5+c1c4s2s3s5oy=c2s1s3s4s5c2c3c4s1s5c1c5+c3s1s2s4s5+c4s1s2s3s5oz=c2c3s4s5+c2c4s3s5+c3c4s2s5s2s3s4s5ax=c1s2s3s4c1c2c4s3c1c3c4s2c1c2c3s4ay=s1s2s3s4c2c4s1s3c3c4s1s2c2c3s1s4az=c2s3s4+c3s2s4+c4s2s3c2c3c4px=a1c1+a2c1c2+a3c1c2c3a3c1s2s3py=a1s1+a2c2s1+a3c2c3s1a3s1s2s3pz=a2s2a3c2s3a3c3s2

Simple D-H in matlab

function [T] = dh_transform(a, alpha, d, theta, standard_dh)
% dh_transform computes the Denavit-Hartenberg transformation matrix
% Given:
%   a (also written as 'r') - distance between origin(i) and origin(i-1)
%                             about z(i-1)
%
%   alpha(?) - angle from z(i-1) to z(i) about x(i)
%
%   d - the link offset betwen origin(i) with respect to origin(i-1)
%     along z(i-1)
%
%   theta (?) - joint angle between from x(i-1) to x(i) about z(i-1)
%
%
%
%   standard_dh - uses standard DH convention if 1 or if this
%                       parameter is not provided. Uses modified DH
%                       if this value is 0
% OR given:
%           a = DH parameter matrix
%           i.e. for SCARA manipulator a will look like as follows
%           syms q1 q2 d3 q4 a1 a2
%           a =         [ 0             0            0          q1;
%                        a1             0            0          q2;
%                        a2             0            -d3        0 ;
%                        0              0            0          q4];
%
%

if (nargin <= 2)
    if (nargin == 1)
        standard_dh = 1;
    else
        standard_dh = alpha;
    end
    
    dh_parameter_matrix = a;
    for row = 1:size(dh_parameter_matrix,1)
        dh_row = dh_parameter_matrix(row,:);
        a = dh_row(1);
        alpha = dh_row(2);
        d = dh_row(3);
        theta = dh_row(4);
        T(:,:,row) = dh_transform(a, alpha, d, theta, standard_dh);
    end
    
    if (isa(T,'sym'))
        T_out = sym(eye(4,4));
    else  
         T_out = eye(4,4);
    end
    
    for i=1:size(T,3)
            T_out = T_out * T(:,:,i);
    end
    T = T_out;

        
else if (nargin >= 4)
            if (nargin < 5)
                standard_dh = 1;
            end
            if standard_dh  % Standard DH convention computation
                T = [cos(theta)  -sin(theta)*cos(alpha)  sin(theta)*sin(alpha) a*cos(theta);
                    sin(theta)   cos(theta)*cos(alpha)   -cos(theta)*sin(alpha) a*sin(theta);
                    0          sin(alpha)               cos(alpha)            d;
                    0          0                        0                     1];
            else  % Modified DH convention computation
                T = [cos(theta)  -sin(theta)  0  a;
                    sin(theta)*cos(alpha) cos(theta)*cos(alpha) -sin(alpha) -d*sin(alpha);
                    sin(theta)*sin(alpha) cos(theta)*sin(alpha) cos(alpha) d*cos(alpha);
                    0   0   0   1];
            end
        end
        
    end

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/344716.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

谷歌浏览器新增3个重磅生成式AI!自动生成文本、壁纸等

1月24日&#xff0c;谷歌在官网宣布&#xff0c;在谷歌浏览器&#xff08;Chrome最新版本M121&#xff09;中新增自动生成文本、壁纸以及自动管理标签3个全新生成式AI功能&#xff0c; 这也是为数不多支持生成式AI的浏览器。需要注意的是&#xff0c;由于这三项功能处于预览测…

33、WEB攻防——通用漏洞文件上传中间件解析漏洞编辑器安全

文章目录 一、中间件文件解析——IIS&Apache&Nginx1、IIS2、Apache3、Nginx 二、web编辑器 一、中间件文件解析——IIS&Apache&Nginx 1、IIS IIS爆过漏洞的版本&#xff1a;IIS6.0&#xff08;windows server 2003&#xff09;、IIS7.0和IIS7.5&#xff08;w…

如何在CentOS使用docker-compose部署Apache Superset并实现公网访问

文章目录 前言1. 使用Docker部署Apache Superset1.1 第一步安装docker 、docker compose1.2 克隆superset代码到本地并使用docker compose启动 2. 安装cpolar内网穿透&#xff0c;实现公网访问3. 设置固定连接公网地址 前言 Superset是一款由中国知名科技公司开源的“现代化的…

【云原生】Docker的安装和镜像操作

目录 什么是Docker&#xff1f; 容器化越来越受欢迎&#xff0c;因为容器是&#xff1a; Docker与虚拟机的区别&#xff1a; 容器在内核中支持2种重要技术&#xff1a; Docker核心概念&#xff1a; 安装Docker 安装依赖包 设置阿里云镜像源 安装 Docker-CE并设置为开机…

简单Web UI 自动化测试框架 seldom

pyse 更名为 seldom WebUI automation testing framework based on Selenium and unittest. 基于 selenium 和 unittest 的 Web UI自动化测试框架。 特点 提供更加简单API编写自动化测试。提供脚手架&#xff0c;快速生成自动化测试项目。自动生成HTML测试报告生成。自带断言方…

vue3+ts+element-plus集成bpmn.js

Bpmn.js集成文档 说明&#xff1a; 本文档主要是作为集成&#xff0c;不是原创&#xff08;主要是填写转载他又让我写原文链接&#xff0c;但是我又没有原文链接哈哈哈&#xff09;&#xff0c;感谢以下参考博文。 本项目页面模板使用Geeker-Admin作为前端模板Geeker-Admin&a…

数据链路层——笔记·续

使用集线器的星形拓扑 传统以太网传输媒体&#xff1a;粗同轴电缆 -> 细同轴电缆 -> 双绞线。 采用双绞线的以太网采用星形拓扑。 在星形的中心则增加了一种可靠性非常高的设备&#xff0c;叫做集线器 (hub)。 传统以太网使用同轴电缆&#xff0c;采用总线形拓扑结构&am…

php no input file specified

一、修改 .user.ini 文件 内容 open_basedir/wab/led-sht.com/:/tmp/ led-sportslight.com是项目根目录位置 改好后保存并清空缓存硬刷新网站就行了 二、mkdir(): Permission denied /core/library/think/cache/driver/File.php 第 84 行左右 mkdir(): Permission denied 这个…

Windows AD 组策略 通过脚本修改管理员密码:以安全方式

因为本文主要讲的是通过脚本如何以安全方式设置密码&#xff0c;所以关于组策略如何设置请参考这里&#xff1a; WinServer 2019 AD 组策略 启用本地管理员账号&#xff0c;重置密码_ad域命令启用administrator账户-CSDN博客 我们首先要讲一下&#xff0c;以一般方法创建的脚…

FineReport链接本地DBeaver

finereport链接本地DBeaver fanruan.com/finereport/doc-view-101.html help.fanruan.com/finereport/doc-view-2583.html

PMP证书要怎么考,含金量怎么样?

PMP含金量更多的是“敲门砖”作用&#xff0c;公司招聘的门槛&#xff0c;现在坐项目的大部分都需要PMP/NPDP证书。 当然现在PMP管理模式也很热门&#xff0c;对企业发展很有利&#xff0c;各大企业都有引进改良应用在公司的项目上&#xff0c;之前在校友群里面大家在讨论PMP …

【MySQL源码】Seconds_Behind_Master是如何计算的

作为MySQL DBA&#xff0c;相信大家对参数 Seconds_Behind_Master 并不陌生&#xff0c;该字段的值可以通过 show slave status\G的输出&#xff0c;表示主从延迟的时间&#xff0c;单位为秒。监控主从延迟一般取这个值就足够了。0 表示无延迟&#xff0c;理想状态该值不要超…

selenium执行出现异常,SessionNotCreatedException ChromeDriver only supports

问题现状&#xff1a; 运行程序报错&#xff1a; selenium.common.exceptions.SessionNotCreatedException: Message: session not created: This version of ChromeDriver only supports Chrome version 114 Current browser version is 121.0.6167.85 with binary path /App…

GraphicsMagick 的 OpenCL 开发记录(二十一)

文章目录 支持windows平台windows平台不能生成内核的.bin文件_aligned_free()和free()不匹配的问题 <2022-04-13 Wed> 支持windows平台 支持windows平台需要做的&#xff1a; 为GraphicsMagick/VisualMagick/configure/configure.exe增加“Enable OpenCL”多选框。 从…

【jQuery入门】链式编程、修改css、类操作和className的区别

文章目录 前言一、链式编程二、修改css2.1 获取css的值2.2 设置单个css属性2.3 设置类样式添加类移除类切换类 三、类操作与className的区别总结 前言 jQuery是一个流行的JavaScript库&#xff0c;广泛用于简化DOM操作和处理事件。在jQuery中&#xff0c;链式编程是一种强大的…

Tree-Shaking 作用和实现原理

一、什么是Tree-shaking Tree-shaking 它的名字来源于通过摇晃&#xff08;shake&#xff09;JavaScript代码的抽象语法树&#xff08;AST&#xff09;&#xff0c;是一种用于优化JavaScript代码的技术&#xff0c;主要用于移除未被使用的代码&#xff0c;使得最终生成的代码包…

【机组】计算机组成原理实验指导书.

​&#x1f308;个人主页&#xff1a;Sarapines Programmer&#x1f525; 系列专栏&#xff1a;《机组 | 模块单元实验》⏰诗赋清音&#xff1a;云生高巅梦远游&#xff0c; 星光点缀碧海愁。 山川深邃情难晤&#xff0c; 剑气凌云志自修。 ​ 目录 第一章 性能特点 1.1 系…

OpenTCS IDEA 全流程搭建和运行指南

OpenTCS IDEA 全流程搭建和运行指南 JDK安装下载JDK版本 openTCS源码下载IDEA 打开运行查看下载源码中gradle版本号下载gradle 二进制文件配置IDEA Gradle本地仓库IDEA打开openTCS项目运行顺序 JDK安装 下载JDK版本 JDK网址 注意&#xff1a; 请下载官方文档标准的java13JDK o…

httpClient忽略https的证书认证

忽略https证书认证代码: /*** 创建模拟客户端&#xff08;针对 https 客户端禁用 SSL 验证&#xff09;* return* throws Exception*/public static CloseableHttpClient createHttpClientWithNoSsl() throws Exception {// Create a trust manager that does not validate cer…

软考复习之UML设计篇

UML统一建模语言 构件图&#xff1a;描述系统的物理结构&#xff0c;它可以用来显示程序代码如何分解成模块 部署图&#xff1a;描述系统中硬件和软件的物理结构&#xff0c;它描述构成系统架构的软件构件&#xff0c;处理器和设备 用例图&#xff1a;描述系统与外部系统及用…