【数据结构和算法】--- 二叉树(3)--二叉树链式结构的实现(1)

目录

  • 一、二叉树的创建(伪)
  • 二、二叉树的遍历
    • 2.1 前序遍历
    • 2.2 中序遍历
    • 2.3 后序遍历
  • 三、二叉树节点个数及高度
    • 3.1 二叉树节点个数
    • 3.2 二叉树叶子节点个数
    • 3.3二叉树第k层节点个数
    • 3.4 二叉树查找值为x的节点
  • 四、二叉树的创建(真)

一、二叉树的创建(伪)

在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。由于现在大家对二叉树结构掌握还不够深入,且为了方便后面的介绍,此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等二叉树结构了解的差不多时,我们反过头再来研究二叉树真正的创建方式。
基于二叉树的链式结构,于是可以先malloc动态开辟出二叉树的每个节点并初始化,然后通过节点中的指针struct BinaryTreeNode* left(指向左树)和struct BinaryTreeNode* right(指向右树),将各个节点连接起来,最后大致模拟出了一棵二叉树,代码如下:

typedef int BTDataType;
typedef struct BinaryTreeNode
{
    BTDataType data;
    struct BinaryTreeNode* left;  //左树
    struct BinaryTreeNode* right; //右树
}BTNode;
BTNode* CreatBinaryTree()
{
    //动态开辟节点
    BTNode* node1 = BuyNode(1);
    BTNode* node2 = BuyNode(2);
    BTNode* node3 = BuyNode(3);
	BTNode* node4 = BuyNode(4);
 	BTNode* node5 = BuyNode(5);
 	BTNode* node6 = BuyNode(6);
    //链接节点
 	node1->left = node2;
 	node1->right = node4;
 	node2->left = node3;
 	node4->left = node5;
 	node4->right = node6;
 	return node1;
}

在实现二叉树基本操作前,再回顾下二叉树的概念,一棵二叉树是结点的一个有限集合,该集合:

  • 或者为空
  • 由一个根节点加上两棵分别称为左子树和右子树的二叉树组成

二叉树满足的条件:

  • 二叉树不存在度大于2的结点
  • 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树。

其余二叉树的概念还请回顾:【数据结构和算法】—二叉树(1)–树概念及结构
在这里插入图片描述
从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的。


注意: 上述代码并不是创建二叉树的方式,真正创建二叉树方式将在后面介绍。

二、二叉树的遍历

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。 访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。下图可以理解为是二叉树的前序遍历:
在这里插入图片描述
按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历:

  1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。
  2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。
  3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。

由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。 NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

2.1 前序遍历

前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。 依据此规律我们便可如下遍历二叉树,为了方便观察,每次遍历到根节点都输出一下:

// 二叉树前序遍历 
void BinaryTreePrevOrder(BTNode* root)
{
	if (root == NULL)
	{
		putchar('N');
		return;
	}
	putchar(root->val);  //访问根节点
	BinaryTreePrevOrder(root->left);  //访问左子树
	BinaryTreePrevOrder(root->right);  //访问右子树
}

前序遍历代码,逻辑结构大致如下图,可以参考一下:
在这里插入图片描述
在这利用递归思想来解决前序遍历的问题,因为是前序遍历(访问顺序依次是根节点,左子树,右子树),所以在进入下层递归前可以先输出根节点。当进入左/右子树时,会更新根节点(原为上层根节点的左/右孩子节点) 。二叉树的叶子节点的左右孩子都为NULL,那么便可将递归的结束条件定为NULL。这便是前序遍历的递归逻辑。

2.2 中序遍历

中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。 与前序遍历相似,只是访问顺序不同(依次是左子树,根节点,右子树),那么调整一下代码顺序即可,将输出根节点值的操作(putchar(root->val);),放在访问左子树之后。那么递归每次都会先进入左子树,且最先打印的为叶子节点。代码如下:

// 二叉树中序遍历
void BinaryTreeInOrder(BTNode* root)
{
	if (root == NULL)
	{
		putchar('N');
		return;
	}
	BinaryTreeInOrder(root->left);  //访问左子树
	putchar(root->val);  //输出根节点
	BinaryTreeInOrder(root->right);  //访问右子树
}

2.3 后序遍历

后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。 同样与前序遍历相似,访问顺序不同(依次是左子树,右子树,根节点),依此特性所以我们只需将输出操作(putchar(root->val))放到最后,其余代码不变。实现思想-递归完左子树和右子树后再输出根节点。 代码如下:

// 二叉树后序遍历
void BinaryTreePostOrder(BTNode* root)
{

	if (root == NULL)
	{
		putchar('N');
		return;
	}
	BinaryTreePostOrder(root->left);  //访问左子树
	BinaryTreePostOrder(root->right);  //访问右子树
	putchar(root->val);  //输出根节点
}

三种遍历最后输出的结果(图中N表示递归时遇到了NULL):

  • 前序遍历结果:1 2 3 4 5 6
  • 中序遍历结果:3 2 1 5 4 6
  • 后序遍历结果:3 2 5 6 4 1

在这里插入图片描述


  1. 设一课二叉树的中序遍历序列:badce,后序遍历序列:bdeca,则二叉树前序遍历序列为 ( D )。
    A adbce
    B decab
    C debac
    D abcde

解: 解题思想(给定两种遍历序列,求出另外一种):我们可以根据各种遍历方法的特性来求解。( 1 ) 根据后续遍历序列找出根节点,因为后续遍历最后才会输出根,那么在序列的最后一个即为根节点a;( 2 ) 接着在中序遍历序列中找出根节点,然后划分左子树和右子树;( 3 ) 然后再到后序遍历序列中去除左子树和根节点,那么得到的便是右子树,并将其看为独立的树;( 4 ) 重复上述三步操作,直到排出完整的树。
图解如下:
在这里插入图片描述
解决此类问题最重要的还是要弄懂代码的递归思想。

三、二叉树节点个数及高度

3.1 二叉树节点个数

求二叉树的节点个数,利用的还是递归思想。我们可以将问题转化为----根节点(1),左子树的节点个数(root->left)和右子树的节点个数(root->right)的总结点个数。我们可以将根节点为空(root == NULL)作为递归结束的条件,并返回0(return 0)。 这种方法通常被称为递归分治

// 二叉树节点个数
int BinaryTreeSize(BTNode* root)
{
	if (root == NULL)
		return 0;
	return BinaryTreeSize(root->left) + BinaryTreeSize(root->right) + 1;
}

代码图解:
在这里插入图片描述

3.2 二叉树叶子节点个数

叶子节点概念:含有的子树个数为0的节点。 如本次创建的二叉树的节点3,节点5,节点6。
基于叶子节点的特性,同样可以利用递归分治的方法,将问题同化为----左子树的叶子节点个数和右子树的叶子节点个数之和

函数返回的条件:

  • 当前节点(root)的左子树(root->left)和右子树(root->right)都为空时(即!(root->left && root->right)),那么此节点为叶子节点,并返回1
  • 当前节点为空节点(即(root == NULL)),返回0
  • 函数执行到最后,返回当前树的叶子节点数。
// 二叉树叶子节点个数
int BinaryTreeLeafSize(BTNode* root)
{
	if (root == NULL)
		return 0;
	if (!(root->left && root->right))
		return 1;
	return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
}

代码图解:
在这里插入图片描述

3.3二叉树第k层节点个数

既然是求第k层的节点个数,那我们便可以定义一个变量k,记录当前函数所要递归的层数。既然k的值是变化的,那么可以将他作为函数的参数,每递归一层便让他减一k - 1,那么k的值到1时,便是我们所要求的二叉树的第k层。

依据上述关系,便可以得出 函数返回的条件:

  • 遇到空节点时(root == NULL),返回0
  • k == 1时(说明到了二叉树的第k层),且当前节点不为空(root != NULL),那么便可返回1
  • 函数执行到了最后,返回统计到的符合条件的节点个数。
// 二叉树第k层节点个数
int BinaryTreeLevelKSize(BTNode* root, int k)
{
	if (root == NULL)
		return 0;
	if (k == 1 && root != NULL)
		return 1;
	return BinaryTreeLevelKSize(root->left, k - 1) + BinaryTreeLevelKSize(root->right, k - 1);
}

根据函数返回条件不难发现,k == 1时递归便不会继续往下层执行,这是因为此时函数必定会满足两个if条件中的一个,这也避免了递归到二叉树的第k + 1层。

代码图解:
在这里插入图片描述

3.4 二叉树查找值为x的节点

查找值为x的节点,可以将递归分治为----判断当前节点,判断左子树,判断右子树。 那么当遇到空节点(root == NULL)就返回return NULL;如果遇到所要查找的值(root->val == x)就返回当前地址(return root);那么如果都不满足就继续搜寻左子树,然后右子树;直到最后搜寻完整棵二叉树,都没有找到x,那么便返回NULL
还需要注意的一个问题是,如果在递归过程中找到了目标值x返回了当前地址root,但是现在只是回到了上一层递归的地方,返回值并不会被接收,而是继续执行下一个逻辑。 那么我们便可以用BTNode* ret1来接受函数的返回值,并判断,当返回值(ret1)不为NULL时(即说明上一次递归时,找到了x)直接返回此值return ret1

// 二叉树查找值为x的节点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{
    //空节点
	if (root == NULL)
		return NULL;
	//值为x的节点
	if (root->val == x)
		return root;
	//左子树递归,ret接收返回值,并判断
	BTNode* ret1 = BinaryTreeFind(root->left, x);
	if (ret1 != NULL)
		return ret1;
	//方法一:易于理解
	//BTNode* ret2 = BinaryTreeFind(root->right, x);
	//if (ret2 != NULL)
	//	return ret2;
	return BinaryTreeFind(root->right, x);
	return NULL;
}

代码图解:
在这里插入图片描述

四、二叉树的创建(真)

通过上面对各种遍历方法和递归思想的讲解,相信使用递归来真正创建二叉树也不难了,如下:

// 通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树
BTNode* BinaryTreeCreate(BTDataType* a, int* pi)
{
    //判断是否为空,即当a[*pi] == '#'时
	if (a[*pi] == '#')
	{
		(*pi)++;
		return NULL;
	}
	//动态开辟节点
	BTNode* node = (BTNode*)malloc(sizeof(BTNode));
	if (node == NULL)
	{
		perror("malloc()::fail");
		exit(-1);
	}//赋值并连接(递归)
	node->val = a[*pi];
	(*pi)++;
	node->left = BinaryTreeCreate(a, pi);
	node->right = BinaryTreeCreate(a, pi);
	retur

上面介绍的二叉树的一些函数的执行结果如下:

在这里插入图片描述
另外还有一些较为复杂的函数将在下一篇文章中介绍。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/342483.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vertica10.0.0单点安装_ubuntu18.04

ubuntu的软件包格式为deb,而rpm格式的包归属于红帽子Red Hat。 由于项目一直用的vertica-9.3.1-4.x86_64.RHEL6.rpm,未进行其他版本适配,而官网又下载不到vertica-9.3.1-4.x86_64.deb,尝试通过alian命令将rpm转成deb,但…

【GitHub项目推荐--Git 教程】【转载】

本开源项目是 Will 保哥在 2013 第 6 界 IT 邦帮忙铁人赛年度大奖的得奖著作。这是一个 Git 教程,这个开源教程用 30 天的时间,带领大家详细了解使用 Git 。 重点介绍了 Git 的一些常用操作,以及日常工作中实际应用场景讲解,下图…

让二叉树无处可逃

志不立,天下无可成之事。 ——王阳明 二叉树 1、树?什么是树1、1、基本概念1、2、树的相关概念1、3、树的表示方式1、4、树的实际运用 2、二叉树?只有两个分支吗?2、1、基本概念2、2、二叉树的相关定义2、3、二叉树的相关性质2、4…

Dockerfile-xxxx

1、Dockerfile-server FROM openjdk:8-jdk-alpine WORKDIR /app COPY . . CMD java -Xms1536M -Xmx1536M -XX:UseG1GC -jar -Dlog4j2.formatMsgNoLookupstrue -Dloader.pathresources,lib -Duser.timezoneGMT-05 /app/server-main-1.0.0.jar 2、Dockerfile-bgd #FROM openjdk…

一站式社交媒体管理:揭秘HubSpot的全面解决方案

在当今数字化时代,社交媒体已经成为企业推广和品牌塑造的关键渠道。而HubSpot作为一站式市场营销平台,不仅致力于协助企业实现综合市场目标,更在社交媒体管理领域提供了全面解决方案。今天运营坛将深入探讨HubSpot如何成为一站式社交媒体管理…

DAY08_SpringBoot—整合Mybatis-Plus

目录 1 MybatisPlus1.1 MP介绍1.2 MP的特点1.3 MybatisPlus入门案例1.3.1 导入jar包1.3.2 编辑POJO对象1.3.3 编辑Mapper接口1.3.4 编译YML配置文件1.3.5 编辑测试案例 1.4 MP核心原理1.4.1 需求1.4.2 原理说明1.4.3 对象转化Sql原理 1.5 MP常规操作1.5.1 添加日志打印1.5.2 测…

哪个牌子的洗地机质量好?值得入手的洗地机

在家庭清洁方面,洗地机绝不是被认为的智商税。实际上,洗地机是一种非常实用的清洁工具,其最大的优点在于能够高效地协助我们清理家居环境,不论是在何种场景下,都能有效提升卫生水平。然而,由于市场上存在众…

seata1.8 + nacos,store.mode=db

吐槽一下,官方文档是真少,而且更新很不及时。。 官网地址:直接部署 | Apache Seata 上述地址也包含了下载链接,我用的1.8版本,挑一些关键配置说一下 1、服务器上,seata/conf/application.yml,将…

【数据结构】从顺序表到ArrayList类

文章目录 1.线性表1.1线性表的概念2.顺序表2.1顺序表的概念2.2顺序表的实现2.3接口的实现(对数组增删查改操作)3.ArrayList简介4. ArrayList使用 4.1ArrayList的构造4.2 ArrayList的方法4.3 ArrayList的遍历 1.线性表 1.1线性表的概念 线性表(linear list&#xf…

HCIP-10

交换机的作用: 区别集线器(HUB),HUB为物理层设备,只能直接转发发电流; 交换机为数据链路层设备,可以将电流与二进制转换,实现了以下功能: 无限的传输距离彻底解决了冲突…

条件概率、全概率和贝叶斯公式

目录 1. 条件概率 1.1 条件概率说明 1.2 举例说明 1.3 条件概率公式 2. 全概率公式 2.1 条件概率公式 2.2 一个特例公式 2.3 全概率公式的意义 3. 贝叶斯公式 3.1 贝叶斯公式的推导 3.2 贝叶斯公式一个特例 ​​​​​​​3.3 贝叶斯公式的意义 4. 先验概率 &…

6.1 实现微服务:匹配系统(上中下)

WebSocketConfig。ja(onOpen建立连接时自动调用onClose关闭链接时自动调用(user还存在就在线程移除)onMessageServer从Client接收消息时触发) status:match来切换界面是不是匹配还是比赛的 解析token,如果…

Elastic Observability 8.12:AI 助手、SLO 和移动 APM 支持的正式发布

作者:来自 Elastic Tom Grabowski, Akhilesh Pokhariyal Elastic Observability 8.12 宣布 AI Assistant 全面上市 (正式发布)、服务级别目标 (SLO) 和移动 APM 支持: 服务级别目标 (service level objective - SLO):现在正式发布版允许 SRE…

python:socket基础操作(2)-《udp发送信息》

基础发送udp信息 1.导入socket模块 2.使用udp模块 3.发送内容 4.关闭套接字 很简单的4步就可以实现udp的消息发送 import socket # 导入模块udp_socket socket.socket(socket.AF_INET,socket.SOCK_DGRAM) # 使用ipv4 udp协议udp_socket.sendto(b"hello world",(&…

即插即用篇 | UniRepLKNet:用于音频、视频、点云、时间序列和图像识别的通用感知大卷积神经网络 | DRepConv

大卷积神经网络(ConvNets)近来受到了广泛研究关注,但存在两个未解决且需要进一步研究的关键问题。1)现有大卷积神经网络的架构主要遵循传统ConvNets或变压器的设计原则,而针对大卷积神经网络的架构设计仍未得到解决。2)随着变压器在多个领域的主导地位,有待研究ConvNets…

精品基于Uniapp+springboot智慧校园管理系统App课程选课成绩

《[含文档PPT源码等]精品基于Uniappspringboot智慧校园管理系统App》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程、包运行成功! 软件开发环境及开发工具: 开发语言:Java 后台框架:springboot、ssm …

ffmpeg使用及java操作

1.文档 官网: FFmpeg 官方使用文档: ffmpeg Documentation 中文简介: https://www.cnblogs.com/leisure_chn/p/10297002.html 函数及时间: ffmpeg日记1011-过滤器-语法高阶,逻辑,函数使用_ffmpeg gte(t,2)-CSDN博客 java集成ffmpeg: SpringBoot集成f…

【网络安全】-基本工具msf

secure 1、有此漏洞的目标主机2、无此漏洞的目标主机(常用) ps.本着兴趣爱好,加强电脑的安全防护能力,并严格遵守法律和道德规范。msf(metasploit framework)是一个开源的渗透测试框架,用于开发…

“智汇语言·驭领未来”——系列特辑:LLM大模型信息获取与企业应用变革

“智汇语言驭领未来”——系列特辑:LLM大模型信息获取与企业应用变革 原创 认真的飞速小软 飞速创软 2024-01-16 09:30 发表于新加坡 本期引言 LLM(Large Language Model)大型语言模型以其自然语言理解和生成能力,正以前所未有的…

函数极限与连续复盘

文章目录 函数的概念与特性反函数复合函数重要函数图像三个重要结论隐函数函数的四种特性有界性单调性奇偶性定义判断式复合函数的奇偶性:两个要记住的函数奇偶性:导数的奇偶性性质:一种特殊的形式 周期性重要结论 函数的图像基本初等函数与初等函数有趣的特性: 函数极限的概念…