时间序列预测 — CNN-LSTM-Attention实现多变量负荷预测(Tensorflow):多变量滚动

   专栏链接:https://blog.csdn.net/qq_41921826/category_12495091.html

专栏内容

​ 所有文章提供源代码、数据集、效果可视化

​ 文章多次上领域内容榜、每日必看榜单、全站综合热榜

时间序列预测存在的问题

 现有的大量方法没有真正的预测未来值,只是用历史数据做验证

​ 利用时间序列分解算法存在信息泄露的问题:有人用emd+lstm对时间序列进行预测,是否存在原理上的问题? - 知乎


目录

1 数据处理

1.1 导入库文件

1.2 导入数据集

​1.3 缺失值分析

​2 构造训练数据

3 CNN_LSTM-Attention模型训练

3.1 CNN_LSTM模型 

3.2 搭建Attention模型

3.3 搭建CNN_LSTM-Attention模型

4 CNN_LSTM-Attention模型预测

4.1 分量预测

4.2 可视化


1 数据处理

1.1 导入库文件

import scipy
import pandas as pd
import numpy as np
import math
import datetime
from matplotlib import pyplot as plt

# 导入深度学习框架tensorflow
import tensorflow as tf    
from tensorflow import keras 
from tensorflow.keras import Sequential, layers, callbacks
from tensorflow.keras.layers import Input, Reshape,Conv2D, MaxPooling2D, LSTM, Dense, Dropout, Flatten, Reshape, TimeDistributed
from keras import backend as K

from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error, mean_absolute_percentage_error 
plt.rcParams['font.sans-serif'] = ['SimHei']     # 显示中文
plt.rcParams['axes.unicode_minus'] = False  # 显示负号
plt.rcParams.update({'font.size':18})  #统一字体字号

1.2 导入数据集

实验数据集采用数据集6:澳大利亚电力负荷与价格预测数据(下载链接),包括数据集包括日期、小时、干球温度、露点温度、湿球温度、湿度、电价、电力负荷特征,时间间隔30min。

# 导入数据
data_raw = pd.read_excel("澳大利亚电力负荷与价格预测数据.xlsx")
data_raw = data_raw[-365*24*6-49:-1].reset_index(drop=True)
data_raw

​对数据进行可视化

from itertools import cycle
# 可视化数据
def visualize_data(data, row, col):
    cycol = cycle('bgrcmk')
    cols = list(data.columns)
    fig, axes = plt.subplots(row, col, figsize=(16, 4))
    fig.tight_layout()
    if row == 1 and col == 1:  # 处理只有1行1列的情况
        axes = [axes]  # 转换为列表,方便统一处理
    for i, ax in enumerate(axes.flat):
        if i < len(cols):
            ax.plot(data.iloc[:,i], c=next(cycol))
            ax.set_title(cols[i])
        else:
            ax.axis('off')  # 如果数据列数小于子图数量,关闭多余的子图
    plt.subplots_adjust(hspace=0.6)
    plt.show()

visualize_data(data_raw.iloc[:,2:], 2, 3)

单独查看部分负荷数据。

# 预测结果可视化
plt.figure(dpi=100, figsize=(14, 4))
plt.plot(data_raw['电力负荷'], markevery=5)
plt.xlabel('时间')
plt.ylabel('负荷')
plt.show()

​1.3 缺失值分析

首先查看数据的信息,发现并没有缺失值

data_raw.info()

​进一步统计缺失值

data_raw.isnull().sum()

​2 构造训练数据

构造数据前先将数据变为数值类型

data = data_raw.iloc[:-48*8,2:].values

构造训练数据,也是真正预测未来的关键。首先设置预测的timesteps时间步、predict_steps预测的步长(预测的步长应该比总的预测步长小),length总的预测步长,参数可以根据需要更改。

timesteps = 48*7 #构造x,为48*7个数据,表示每次用前48*7个数据作为一段
predict_steps = 4 #构造y,为4个数据,表示用后4个数据作为一段
length = 48  #预测多步,预测48个数据
feature_num = 6 #特征的数量

通过前timesteps行历史数据预测后面predict_steps个数据,需要对数据集进行滚动划分(也就是前timesteps行的数据和后predict_steps行的数据训练,后面预测时就可通过timesteps行数据预测未来的predict_steps行数据)。这里需要注意的是,因为是多变量滚动预测多变量,特征就是标签(例如,前5行[干球温度、露点温度、湿球温度、电价、电力负荷]预测第6行[干球温度、露点温度、湿球温度、电价、电力负荷],划分数据集时,就用前5行当做train_x,第6行作为train_y,此时的train_y有多列,而不是只有1列)。

# 构造数据集,用于真正预测未来数据
# 整体的思路也就是,前面通过前timesteps个数据训练后面的predict_steps个未来数据
# 预测时取出前timesteps个数据预测未来的predict_steps个未来数据。
def create_dataset(datasetx, datasety=None, timesteps=96*7, predict_size=12):
    datax = []  # 构造x
    datay = []  # 构造y
    for each in range(len(datasetx) - timesteps - predict_size):
        x = datasetx[each:each + timesteps]
        # 判断是否是单变量分解还是多变量分解
        if datasety is not None:
            y = datasety[each + timesteps:each + timesteps + predict_size]
        else:
            y = datasetx[each + timesteps:each + timesteps + predict_size]
        datax.append(x)
        datay.append(y)
    return datax, datay

​​数据处理前,需要对数据进行归一化,按照上面的方法划分数据,这里返回划分的数据和归一化模型(单变量和多变量的归一化不同,多变量归一化需要将X和Y分开归一化,不然会出现信息泄露的问题),此时的归一化是相当于是单变量归一化,函数的定义如下:

# 数据归一化操作
def data_scaler(datax, datay=None, timesteps=36, predict_steps=6):
    # 数据归一化操作
    scaler1 = MinMaxScaler(feature_range=(0, 1))   
    datax = scaler1.fit_transform(datax)
    # 用前面的数据进行训练,留最后的数据进行预测
    # 判断是否是单变量分解还是多变量分解
    if datay is not None:
        scaler2 = MinMaxScaler(feature_range=(0, 1))
        datay = scaler2.fit_transform(datay)
        trainx, trainy = create_dataset(datax, datay, timesteps, predict_steps)
        trainx = np.array(trainx)
        trainy = np.array(trainy)
        return trainx, trainy, scaler1, scaler2
    else:
        trainx, trainy = create_dataset(datax, timesteps=timesteps, predict_size=predict_steps)
        trainx = np.array(trainx)
        trainy = np.array(trainy)
        return trainx, trainy, scaler1, None

然后分解的数据进行划分和归一化。

trainx, trainy, scalerx, scalery = data_scaler(data.reshape(-1, 1), timesteps=timesteps, predict_steps=predict_steps)

3 CNN_LSTM-Attention模型训练

3.1 CNN_LSTM模型 

CNN-LSTM 是一种结合了 CNN 特征提取能力与 LSTM 对时间序列长期记忆能力的混合神经网络。

CNN 主要由四个层级组成, 分别为输入层、 卷积层、 激活层(Relu 函数)和池化层。 每一层都会将数据处理之后送到下一层, 其中最重要的是卷积层, 这个层级起到的作用是将特征数据进行卷积计算, 将计算好的结果传到激活层, 激活函数对数据进行筛选。最后一层是 LSTM 层, 这一层是根据 CNN 处理后的特征数据,对其模型进行进一步的维度修偏, 权重修正等工作, 为下一步输出精度较高的预测值做好准备, 在 LSTM 训练的过程中, 由于其神经网络内部包括了输入、 遗忘和输出门, 通常的做法是通过增减遗忘门和输入门的个数, 来控制算法的精度。
 

来源:基于改进的 CNN-LSTM 短期风功率预测方法研究

对于输入到 CNN-LSTM 的数据,首先,经过 CNN 的卷积层对局部特征进行提取,将提取后的特征向量传递到池化层进行特征向量的下采样和数据体量的压缩。然后,将经过卷积层和池化层处理后的特征向量经过一个扁平层转化成一维向量输入到 LSTM 中, 每一层 LSTM 后加一个随机失活层以防止模型过拟合。

3.2 搭建Attention模型

参考文章:https://www.cnblogs.com/jiangxinyang/p/9367497.html

(1) Attention思想

深度学习里的Attention model其实模拟的是人脑的注意力模型,举个例子来说,当我们观赏一幅画时,虽然我们可以看到整幅画的全貌,但是在我们深入仔细地观察时,其实眼睛聚焦的就只有很小的一块,这个时候人的大脑主要关注在这一小块图案上,也就是说这个时候人脑对整幅图的关注并不是均衡的,是有一定的权重区分的。这就是深度学习里的Attention Model的核心思想。

(2) Encoder-Decoder框架

所谓encoder-decoder模型,又叫做编码-解码模型。这是一种应用于seq2seq问题的模型。seq2seq问题简单的说,就是根据一个输入序列x,来生成另一个输出序列y。Encoder-Decoder模型中的编码,就是将输入序列转化成一个固定长度的向量;解码,就是将之前生成的固定向量再转化成输出序列。

Encoder-Decoder(编码-解码)是深度学习中非常常见的一个模型框架,准确的说,Encoder-Decoder并不是一个具体的模型,而是一类框架。Encoder和Decoder部分可以是任意的文字,语音,图像,视频数据,模型可以采用CNN,RNN,BiRNN、LSTM、GRU等等。所以基于Encoder-Decoder,我们可以设计出各种各样的应用算法。

Encoder-Decoder框架可以看作是一种文本处理领域的研究模式,应用场景异常广泛,下图是文本处理领域里常用的Encoder-Decoder框架最抽象的一种表示:

(3) Attention模型 

        在Encoder-Decoder框架中,在预测每一个yi时对应的语义编码c都是一样的,也就意味着序列X中点对输出Y中的每一个点的影响都是相同的。这样就会产生两个弊端:一是语义向量无法完全表示整个序列的信息,再者就是先输入的内容携带的信息会被后输入的信息稀释掉,或者说,被覆盖了。输入序列越长,这个现象就越严重。这就使得在解码的时候一开始就没有获得输入序列足够的信息, 那么解码的准确度自然也就要打个折扣了。

  为了解决上面的弊端,就需要用到我们的Attention Model(注意力模型)来解决该问题。在机器翻译的时候,让生成词不是只能关注全局的语义编码向量c,而是增加了一个“注意力范围”,表示接下来输出词时候要重点关注输入序列中的哪些部分,然后根据关注的区域来产生下一个输出。模型结构如下:

关于模型的更多介绍可以查阅相关文献,下面给出Attention的代码

# CNN_LSTM_Attention模型
from keras.layers import multiply, Permute, RepeatVector, Multiply, Lambda
from keras.models import Model

def attention_function(inputs, single_attention_vector=False):    
    # 获取 inputs 的时间步数和特征维度   
    TimeSteps = K.int_shape(inputs)[1]
    input_dim = K.int_shape(inputs)[2]
 
    a = Permute((2, 1))(inputs)   #将 inputs 的维度进行转置,维度顺序变为 (特征维度, 时间步维度)  
    a = Dense(TimeSteps, activation='softmax')(a)  #经过全连接层
    
     # 如果为 True,单一注意力操作
    if single_attention_vector:
        a = Lambda(lambda x: K.mean(x, axis=1))(a)  #对第二个维度进行求平均,得到单一注意力向量
        a = RepeatVector(input_dim)(a)   # 将单一注意力向量进行复制,使其与 inputs 的维度一致  
         
    a_probs = Permute((2, 1))(a)    # 再次将注意力权重进行转置,维度顺序变为 (时间步维度, 特征维度)  
    output_attention_mul = Multiply()([inputs, a_probs])  # 使用 Multiply 层将 inputs 和注意力权重进行元素级乘法操作
    return output_attention_mul

3.3 搭建CNN_LSTM-Attention模型

首先搭建模型的常规操作,然后使用训练数据trainx和trainy进行训练,进行50个epochs的训练,每个batch包含64个样本(建议使用GPU进行训练,增加epochs)。

def CNN_LSTM_Attention_train(trainx, trainy, timesteps, feature_num, predict_steps):
    # 调用GPU加速
    gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
    for gpu in gpus:
        tf.config.experimental.set_memory_growth(gpu, True)
    
    #搭建cnn模型
    inputs = Input(shape=(timesteps, feature_num))
    reshaped = Reshape((timesteps, feature_num, 1))(inputs)
    conv2d = Conv2D(filters=64, kernel_size=3, strides=1, padding="same", activation="relu")(reshaped)
    maxpool = MaxPooling2D(pool_size=2, strides=1, padding="same")(conv2d)
    dropout = Dropout(0.3)(maxpool)
    reshape2 = Reshape((timesteps, -1))(dropout)
    
    #搭建atttention模型
    attention_out = attention_function(reshape2)
    
    #搭建lstm模型
    lstm1 = LSTM(128, return_sequences=True, dropout=0.2)(attention_out)
    lstm2 = LSTM(128, return_sequences=False, dropout=0.2)(lstm1)  
    repeat_vector = RepeatVector(predict_steps)(lstm2) 
    outputs = TimeDistributed(Dense(feature_num))(repeat_vector)
    model = Model(inputs=inputs, outputs=outputs)
    model.compile(loss="mean_squared_error", optimizer="adam", metrics=['accuracy'])
    print(model.summary())
    model.fit(trainx, trainy, epochs=50, batch_size=128)
 
    return model

然后进行训练,将训练的模型、损失和训练时间保存。

# 模型训练
model = CNN_LSTM_Attention_train(trainx, trainy, timesteps, feature_num, predict_steps)
# 模型保存
model.save('cnn_lstm_attention.h5')

4 CNN_LSTM-Attention模型预测

4.1 分量预测

下面介绍文章中最重要,也是真正没有未来特征的情况下预测未来标签的方法。整体的思路也就是取出预测前48*7行数据预测未来的4行个数据,然后将4行数据添加进历史数据,再预测4行数据,滚动预测。因为每次只预测4行数据,但是我要预测48个数据,所以采用的就是循环预测12次的思路。

# #滚动predict
# #因为每次只能预测4行数据,但是我要预测48行数据,所以采用的就是循环预测的思路。
# #每次预测的4行数据,添加到数据集中充当预测x,然后在预测新的4行y,再添加到预测x列表中,如此往复,最终预测出48行。
def predict_using_LSTM(model, data, timesteps, predict_steps, length, feature_num, scaler):
    # 初始化预测输入和输出
    predict_xlist = np.array(data).reshape(1, timesteps, feature_num) 
    predict_y = np.array([]).reshape(0, feature_num)

    while len(predict_y) < length:
        # 从最新的predict_xlist取出timesteps个数据,预测新的predict_steps个数据
        predictx = predict_xlist[:,-timesteps:,:]

        # 预测新值
        lstm_predict = model.predict(predictx)
        
        # 将新预测出来的predict_steps个数据,加入predict_xlist列表,用于下次预测
        predict_xlist = np.concatenate((predict_xlist, lstm_predict), axis=1)
        
        # 预测的结果y,每次预测的predict_steps个数据,添加进去,直到预测length个为止
        lstm_predict = scaler.inverse_transform(lstm_predict.reshape(-1, feature_num))
        predict_y = np.concatenate((predict_y, lstm_predict), axis=0)
        
    return predict_y

然后对数据进行预测,得到预测结果。

from tensorflow.keras.models import load_model

# 加载模型
model = load_model('CNN_LSTM_Attention.h5')
pre_x = scalerx.transform(data[-48*8:-48])
y_true = data[-48:, -1]
# 预测
y_predict = predict_using_LSTM(model, pre_x, timesteps, predict_steps, length, feature_num, scalerx)

4.2 可视化

对预测的结果进行可视化并计算误差。

# 预测并计算误差和可视化
def error_and_plot(y_true,y_predict):
    # 计算误差
    r2 = r2_score(y_true, y_predict)
    rmse = mean_squared_error(y_true, y_predict, squared=False)
    mae = mean_absolute_error(y_true, y_predict)
    mape = mean_absolute_percentage_error(y_true, y_predict)
    print("r2: %.2f\nrmse: %.2f\nmae: %.2f\nmape: %.2f" % (r2, rmse, mae, mape))
    
    # 预测结果可视化
    cycol = cycle('bgrcmk')
    plt.figure(dpi=100, figsize=(14, 5))
    plt.plot(y_true, c=next(cycol), markevery=5)
    plt.plot(y_predict, c=next(cycol), markevery=5)
    plt.legend(['y_true', 'y_predict'])
    plt.xlabel('时间')
    plt.ylabel('功率(kW)')
    plt.show()   
    
    return 0
error_and_plot(y_true,y_predict[:,-1])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/341195.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ELK+Filebeat 部署实验

Filebeat是轻量级的开源日志文件数据搜集器。通常在需要采集数据的客户端安装 Filebeat&#xff0c;并指定目录与日志格式&#xff0c;Filebeat 就能快速收集数据&#xff0c;并发送给 logstash 进行解析&#xff0c;或是直接发给 Elasticsearch 存储&#xff0c;性能上相比运行…

CentOS 7 安装配置MySQL

目录 一、安装MySQL​编辑​编辑 1、检查MySQL是否安装及版本信息​编辑 2、卸载 2.1 rpm格式安装的mysql卸载方式 2.2 二进制包格式安装的mysql卸载 3、安装 二、配置MySQL 1、修改MySQL临时密码 2、允许远程访问 2.1 修改MySQL允许任何人连接 2.2 防火墙的问题 2…

AnimatedDrawings:让绘图动起来

老样子&#xff0c;先上图片和官网。这个项目是让绘制的动画图片动起来&#xff0c;还能绑定人体的运动进行行为定制。 快速开始 1. 下载代码并进入文件夹&#xff0c;启动一键安装 git clone https://github.com/facebookresearch/AnimatedDrawings.gitcd AnimatedDrawingspip…

java web servlet 学习系统进度管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 java Web学习系统进度管理系统是一套完善的java web信息管理系统 &#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环 境为TOMCAT7.0,Myeclipse8.5开发&#xff0c;数据库为…

图神经网络X项目|基于图神经网络的电商行为的预测(5%)

文章目录 Jupyter Notebook 学习人工智能的好帮手数据集数据集下载数据集调用数据集应用技巧——获取不重复的编号数据集应用技巧——随机采样数据集应用技巧——抽取前N项进行模拟测试 数据集构建技巧一——查看数据集构建进度 Jupyter Notebook 学习人工智能的好帮手 【Jupy…

thinkphp5实战之phpstudy v8环境搭建,解决Not Found找不到路径问题

引言 thinkphp以快速、简约的大道至简的思想广受欢迎&#xff0c;适合开发小型项目。本地环境下&#xff0c;phpstudy v8是一款比较优秀的集成环境软件。部署完项目后&#xff0c;访问的时候傻眼&#xff0c;报错。 解决方案 不要慌&#xff0c;这个是伪静态的原因。选择apach…

DophineScheduler通俗版

1.DophineScheduler的架构 ZooKeeper&#xff1a; AlertServer&#xff1a; UI&#xff1a; ApiServer&#xff1a; 一个租户下可以有多个用户&#xff1b;一个用户可以有多个项目一个项目可以有多个工作流定义&#xff0c;每个工作流定义只属于一个项目&#xff1b;一个租户可…

BACnet网关 BL120BN实现楼宇自控设备统一接入系统,BACnet转Modbus

随着物联网技术的迅猛发展&#xff0c;人们深刻认识到在智能化生产和生活中&#xff0c;实时、可靠、安全的数据传输至关重要。在此背景下&#xff0c;高性能的物联网数据传输解决方案——协议转换网关应运而生&#xff0c;广泛应用于工业自动化和数字化工厂应用环境中。 钡铼…

mysql生成最近24小时整点时间临时表

文章目录 生成最近24小时整点生成最近30天生成12个月 生成最近24小时整点 SELECT-- 每向下推1行, i比上次减去1b.*, i.*,DATE_FORMAT( DATE_SUB( NOW(), INTERVAL ( -( i : i - 1 ) ) HOUR ), %Y-%m-%d %H:00 ) AS time FROM-- 目的是生成12行数据( SELECTa FROM( SELECT 1 A…

RectMask2D的合批情况验证

1.经过实际测试&#xff0c;RectMask2D在裁剪区域完全相同且位置完全重合的情况下能够合批 但是当RectMask2D位置不重合时&#xff0c;就不能合批 注意&#xff0c;虽然此处被RectMask2D裁剪了&#xff0c;但是有部分是被渲染的&#xff0c;在计算深度时属于需要渲染…

深入MySQL窗口函数:原理和应用

在现代数据库管理系统中&#xff0c;窗口函数&#xff08;Window Functions&#xff09;已经成为处理复杂数据分析任务的关键工具。MySQL从8.0版本开始引入了对窗口函数的支持&#xff0c;这极大地增强了其在数据分析和报表生成方面的能力。本文将深入探讨MySQL窗口函数的原理、…

Mapbox加载浙江省天地图服务和数据处理

1. 加载影像服务 通过浙江省天地图官网申请所需服务&#xff0c;使用token获取服务数据 由于浙江省天地图使用的坐标系是 cgcs2000&#xff0c;需要使用 的框架对应为 cgcs2000/mapbox-gl&#xff0c;通过cdn引入或npm下载 影像服务地址为&#xff1a; ‘https://ditu.zjzw…

Docker Ipvlan l3s模式说明

看到Docker Ipvlan中有三种模式L2、L3、L3S模式&#xff0c;查阅了L3S&#xff0c;记录如下&#xff1a; 起因 Docker链接: IPvlan network driver 概念 注释说明&#xff08;摘选自: ipvlan-l3s模式&#xff09; L3S mode与L3 mode 的区别在于启用了iptables (conn-track…

Leetcode—40.组合总和II【中等】

2023每日刷题&#xff08;七十七&#xff09; Leetcode—40.组合总和II 算法思想 实现代码 class Solution { public:vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {vector<vector<int>> ans;vector<int…

JDK8新特性(一)集合之 Stream 流式操作

1.Stream流由来 首先我们应该知道&#xff1a;Stream流的出现&#xff0c;主要是用在集合的操作上。在我们日常的工作中&#xff0c;经常需要对集合中的元素进行相关操作。诸如&#xff1a;增加、删除、获取元素、遍历。 最典型的就是集合遍历了。接下来我们先举个例子来看看 J…

DEB方式安装elastic search7以及使用

参考&#xff1a;https://www.cnblogs.com/anech/p/15957607.html 1、安装elastic search7 #手动下载安装 wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-7.17.1-amd64.deb wget https://artifacts.elastic.co/downloads/elasticsearch/elastics…

ERP系统哪个好用?用友,金蝶,ORACLE,SAP综合测评

ERP系统哪个好用&#xff1f;用友&#xff0c;金蝶&#xff0c;ORACLE&#xff0c;SAP综合测评 ERP领域SAP、ORACLE相对于国内厂商如用友、金蝶优势在哪&#xff1f; SAP&#xff0c;ORACLE操作习惯一般国人用不惯&#xff1b;相对于国产软件&#xff0c;界面也很难看&#x…

JUC并发编程-常用的多线程操作辅助类(必会)、读写锁、阻塞队列

8. 常用的辅助类(必会) 1&#xff09;CountDownLatch CountDownLatch: 减法计数器 CountDownLatch是一个同步辅助类&#xff0c;在多线程环境中用于控制线程的执行顺序。它可以让一个或多个线程等待其他线程完成一组操作后再继续执行。 CountDownLatch通过一个计数器来实现&…

OCP NVME SSD规范解读-7.TCG安全日志要求

在OCP NVMe SSD规格中&#xff0c;TCG的相关内容涉及以下几个方面&#xff1a; 活动事件记录&#xff1a; NVMe SSD需要支持记录TCG相关的持久事件日志&#xff0c;用于追踪固态硬盘上发生的与TCG安全功能相关的关键操作或状态变化&#xff0c;如启动过程中的安全初始化、密钥…

前端基础(三十八):iframe通信、浏览器跨窗口通信

iframe通信 - MessageChannel <!-- index.html --> <h3>MessageChannel</h3> <input id"input" type"text" oninput"handleInput(this.value)" /> <hr /> <iframe src"./demo.html"></iframe&…