JDK8新特性(一)集合之 Stream 流式操作

1.Stream流由来

       首先我们应该知道:Stream流的出现,主要是用在集合的操作上。在我们日常的工作中,经常需要对集合中的元素进行相关操作。诸如:增加、删除、获取元素、遍历。

        最典型的就是集合遍历了。接下来我们先举个例子来看看 JDK8 Stream流式操作出现之前,我们对集合操作的过程,从中来了解一下 JDK8 之前集合操作数据的弊端。

     Demo:现在有一个List集合,集合中有如下数据:"张无忌"、"周芷若"、"杨逍"、"张强"、"张三丰"、"赵敏"

    public static void main(String[] args) {
            List<String> list = new ArrayList<>();
            Collections.addAll(list,"张无忌","周芷若","杨逍","张强","张三丰","赵敏");
            /**
             * 需求:
             *   1.拿到所有姓"张"的名字
             *   2.拿到长度为3个字的名字
             *   3.将最终结果进行打印
             */
            //JDK8 以前遍历操作集合
            for (String name : list) {
                if(name.startsWith("张") && name.length() == 3){
                    System.out.println(name);
                }
            }
            //JDK8 以后使用Stream()流遍历操作集合
            /**************3.使用 Stream流来操作******************/
            list.stream()
                    .filter(name.startsWith("张") && name->name.length()==3)
                    .forEach(name-> System.out.println("111------"+name));
        }

       使用stream流式操作,直接阅读代码的字面意思即可完美展示无关逻辑方式的语义:①获取流  ② 过滤姓张  ③过滤长度为3  ④遍历打印。我们真正要做的事情内容便能够被更好的体现在代码中。

2.Stream流式思想

  注意:Stream流 和 IO 流(InputStream/OutputStream)没有任何关系,请暂时忘记对传统IO流的固有印象。

       Stream流式思想类似于工厂车间的"生产流水线",Stream流不是一种数据结构,不会保存数据,而是对数据进行加工处理。Stream 可以看做是流水线上的一个工序。在流水线上,通过多个工序让一个原材料加工成一个商品。

3.获取Stream流的两种方式 

java.util.stream.Stream<T> 是 JDK8 新加入的流接口。获取一个流非常简单,有以下两种常用的方式:

1.所有的 Collection 集合都可以通过 .stream() 方法来获取流;
2.使用 Stream 接口的 .of() 静态方法,可以获取流。
    public static void main(String[] args) {
        //方式1:根据Collection获取流
        //Collection接口中有一个默认的方法:default Stream<E> stream()
        //1.List获取流
        List<String> list = new ArrayList<>();
        Stream<String> stream01 = list.stream();

        //2.Set获取流
        Set<String> set = new HashSet<>();
        Stream<String> stream02 = set.stream();

        //3.Map获取流
        //Map 并没有继承自 Collection 接口,所有无法通过该 map.stream()获取流。但是可用通过如下三种方式获取:
        Map<String,String> map = new HashMap<>();
        Stream<String> stream03 = map.keySet().stream();
        Stream<String> stream04 = map.values().stream();
        List<Map.Entry<String, String>> collect = map.entrySet().stream().collect(Collectors.toList());
        Stream<Map.Entry<String, String>> stream = map.entrySet().stream();
        //方式2:Stream中的静态方法of获取流
        // static<T> Stream<T> of(T... values)
        // T... values:可变参数,实际原理就是可变数组(传递String数组进去)

        //1.字符串获取流
        Stream<String> stream06 = Stream.of("aa", "bb", "cc");

        //2.数组类型(基本类型除外)
        String[] strs = {"aa","bb","cc"};
        Stream<String> stream07 = Stream.of(strs);

        //3.基本数据类型的数组
        int[] arr = {1,2,3,4};
        //看着没报错,但是看到返回值是 int[],这是 Stream流把整个数组看做一个元素来操作,而不是操作数组中的int元素(这样子是不行的!!!)
        Stream<int[]> stream08 = Stream.of(arr);
        }

4.Stream流常用方法

      Stream流模型的操作很丰富,这里介绍一些常用的API。这些方法可以被分成两种类型:

  •  终结方法:返回值类型不再是 Stream 类型的方法,不再支持链式调用。本小节中,终结方法包括 count() forEach() 方法;
  • 非终结方法:又叫函数拼接方法。值返回值类型仍然是 Stream 类型的方法,支持链式调用(除了终结方法外,其与方法均为非终结方法)

5.Stream流使用注意事项

Stream流只能操作一次;
Stream方法返回的是新的流;
Stream不调用终止方法,中间的操作不会执行。

6.Stream流常用方法 

   提醒以下所有代码部分,能简化部分尽量简化,均使用最简格式!!! 

 1.forEach 

void forEach(Consumer<? super T> action);

        forEach() 方法用来遍历流中的数据,是一个终结方法。该方法接收一个 Consumer 接口函数,会将每一个流元素交给该函数进行处理。示例如下:

public class StreamDemo{
 
    public static void main(String[] args){
        List<String> list = new ArrayList<>();
        Collections.addAll(list,"Mary","Lucy","James","Johson","Steve");
        //forEach()遍历
        //未简写
        //list.forEach((String str)->{
        //    System.out.println(str);
        //});
        //简写1
        //list.forEach(str-> System.out.println(str));
        //最终简写
        list.forEach(System.out::println);
    }
}

测试结果: 

2.count 

 long count();

 count() 方法,用来统计集合中的元素个数,是一个终结方法。该方法返回一个 long 值代表元素个数,示例如下:

    public static void main(String[] args) {
        List<String> list = new ArrayList<>();
        Collections.addAll(list, "Mary", "Lucy", "James", "Johson", "Steve");
        //count()计算集合中元素个数
        long count = list.stream().count();
        System.out.println("元素个数为:" + count);
    }

 

3.filter 

Stream<T> filter(Predicate<? super T> predicate);

filter() 方法,用于过滤数据,返回符合过滤条件的数据,是一个非终结方法。我们可以通过 filter() 方法将一个流转换成另一个子集流。该接口接收一个 Predicate 函数式接口参数(可以是一个 Lambda 或 方法引用) 作为筛选条件。

    public static void main(String[] args) {
        List<String> list = new ArrayList<>();
        Collections.addAll(list,"Mary","Lucy","James","Johson","Steve");
        //filter()过滤,返回以"J"开头的名字
        list.stream().filter(str->str.startsWith("J"))
                .forEach(System.out::println);

        //写法二
        list.stream().filter(str->{
            if (str.startsWith("J")){
                return true;
            }
            return false;
        }).forEach(System.out::println);
    }

  测试结果:

4.limit

Stream<T> limit(long maxSize);

       limit() 方法,用来对 Stream 流中的数据进行截取,只取用前 n 个,是一个非终结方法。参数是一个 long 型,如果集合当前长度大于参数则进行截取,否则不进行操作。因为 limit() 是一个非终结方法,所以必须调用终止方法。示例如下:

    public static void main(String[] args) {
        List<String> list = new ArrayList<>();
        Collections.addAll(list, "Mary", "Lucy", "James", "Johson", "Steve");
        //limit()截取,截取list集合前三个元素
        list.stream().limit(3).forEach(System.out::println);
        
    }

 5.skip

      如果希望跳过前几个元素,去取后面的元素,则可以使用 skip()方法,获取一个截取之后的新流,它是一个非终结方法。参数是一个 long 型,如果 Stream 流的当前长度大于 n,则跳过前 n 个,否则将会得到一个长度为 0 的空流。因为 limit() 是一个非终结方法,所以必须调用终止方法。示例如下:

Stream<T> skip(long n);
    public static void main(String[] args) {
        List<String> list = new ArrayList<>();
        Collections.addAll(list,"Mary","Lucy","James","Johson","Steve");
        //skip()跳过list集合前2个元素,获取剩下的元素
        list.stream().skip(2).forEach(System.out::println);
    }

 备注:使用 skip() 和 limit() 方法,即可实现类似分页的操作了。示例如下:

    //一页10条 分页操作
    //第一页
    skip(0).limit(10)
    //第二页
    skip(10).limit(10)
    //第三页
    skip(20).limit(10)
    ...

6.map

<R> Stream<R> map(Function<? super T, ? extends R> mapper);

      map() 方法,可以将流中的元素映射到另一个流中。即:可以将一种类型的流转换为另一种类型的流(区别:map返回的是指定类型(比如int),而flatMap返回的还是一个Stream流),map() 方法是一个非终结方法。该接口需要一个 Function 函数式接口参数,可以将当前流中的T类型数据转换为另一种R类型的流。

       这个方法有三个对于原始类型的变种方法,分别是:mapToInt,mapToLong 和 mapToDouble。这三个方法也比较好理解,比如 mapToInt 就是把原始 Stream 转换成一个新的 Stream,这个新生成的 Stream 中的元素都是 int 类型。之所以会有这样三个变种方法,可以免除自动装箱/拆箱的额外消耗。(参考:本文 15 mapToInt/mapToLong/mapToDouble)

       因为 map() 方法是一个非终结方法,所以必须调用终止方法。通过如下示例,使用 map() 方法,通过方法引用,便将字符串类型转换成了 Integer 类型。示例如下:

    public static void main(String[] args) {
        List<String> list = new ArrayList<>();
        Collections.addAll(list, "11", "22", "33", "44", "55");
        //通过map()方法,可以将String类型的流转换为int类型的流
        /*list.stream().map((String str)->{
              return Integer.parseInt(str);
          }).forEach((Integer num) -> {
              System.out.println(num);
          });*/
        //简化:
        //list.stream().map(str->Integer.parseInt(str)).forEach(str->System.out.println(str));
        //简化后:
        list.stream().map(Integer::parseInt).forEach(System.out::println);
    }

 7.flatMap

<R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper);

flatMap 的使用,同 map 类似。map只是一维 1对1 的映射,返回的是指定的类型;

      而flatMap返回的则还是一个Stream流,可以对其进行进一步操作。(区别:map返回的是指定类型(比如int),而flatMap返回的还是一个Stream流)

      我的理解为:假如你的集合流中包含子集合(或者需要更深进一步操作),那么使用 flatMap 可以返回该子集合的集合流。示例代码如下所示:

public class Province {
 
    private String name;
 
    private List<String> city;
 
    //get/set 方法
}
 
public class flatMapDemo{
    public static void main(String[] args) {
 
        List<Province> provinceList = new ArrayList<>();
 
        List<String> bjCityList = new ArrayList<>();
        bjCityList.add("海淀");
        bjCityList.add("朝阳");
 
        List<String> shCityList = new ArrayList<>();
        shCityList.add("黄埔");
        shCityList.add("闵行");
 
        Province bjProvince = new Province();
        bjProvince.setName("北京");
        bjProvince.setCity(bjCityList);
        provinceList.add(bjProvince);
 
        Province shProvince = new Province();
        shProvince.setName("上海");
        shProvince.setCity(shCityList);
        provinceList.add(shProvince);
 
        //使用map,需要多次forEach
        provinceList.stream().map(str->str.getCity()).forEach(cityList -> cityList.forEach(System.out::println));
 
        System.out.println("----------");
 
        //使用 flatMap
        provinceList.stream().flatMap(str->str.getCity().stream()).forEach(System.out::println);
    }
}

 测试结果:

8.sorted 

sorted() 方法,可以用来对 Stream 流中的数据进行排序。sorted()方法共有以上两种情况:

    //根据元素的自然规律排序
    Stream<T> sorted();
    //根据比较器指定的规则排序
    Stream<T> sorted(Comparator<? super T> comparator);

       因为 sorted() 方法是一个非终结方法,所以必须调用终止方法。

       场景:①sorted() 方法:按照自然规律,默认为升序排序。

                  ②sorted(Comparator comparator)  方法,按照指定的比较器规则排序(以降序为例)。 示例如下:

    public static void main(String[] args){
        //sorted():根据元素的自然规律排序
        Stream<Integer> stream01 = Stream.of(66,33,11,55);
        stream01 .sorted().forEach(System.out::println);
        System.out.println("   -----  ");
        //sorted(Comparator<? super T> comparator):根据比较器规则降序排序
        Stream<Integer> stream02 = Stream.of(66,33,11,55);
        stream02 .sorted((i1,i2)-> i2-i1).forEach(System.out::println);
    }

9.distinct 

distinct() 方法,可以用来去除重复数据。因为 distinct() 方法是一个非终结方法,所以必须调用终止方法。

       去除重复数据,此处有几种情况:①基本类型去重   ②String类型去重    ③引用类型去重(对象去重)

       ①②使用 distinct() 方法可以直接去重  ③对象类型需要重写 equals() 和 hasCode() 方法,使用 distinct() 方法才能去重成功。示例如下:

public static void main(String[] args){
        //基本类型去重
        Stream<Integer> stream01 = Stream.of(66,33,11,55,33,22,55,66);
        stream01 .distinct().forEach(System.out::println);
 
        //字符串去重
        Stream<String> stream02 = Stream.of("AA","BB","AA");
        stream02.distinct().forEach(System.out::println);
 
        //自定义对象去重
        //(Person对象类,有String name,Integer age 两个属性,两参数构造器,get/set()方法,重写了equals(),hashCode(),toString()方法。此处就不附Person实体类了)
        BiFunction<String,Integer,Person> fn1 = Person::new;
        Stream<Person> stream14 = Stream.of(fn1.apply("西施", 18), fn1.apply("貂蝉", 20), fn1.apply("王昭君", 22), fn1.apply("杨玉环", 23), fn1.apply("杨玉环", 23));
        stream14.distinct().forEach(System.out::println);
    }

 测试结果:

    66
    33
    11
    55
    22
    ----
    AA
    BB
    ----
    Person{name='西施', age=18}
    Person{name='貂蝉', age=20}
    Person{name='王昭君', age=22}
    Person{name='杨玉环', age=23}

10.match

//allMatch 全匹配(匹配所有,所有元素都需要满足条件-->返回true)
boolean allMatch(Predicate<? super T> predicate);
//anyMatch 匹配某个元素(只要有一个元素满足条件即可-->返回true)
boolean anyMatch(Predicate<? super T> predicate);
//noneMatch 匹配所有元素(所有元素都不满足指定条件-->返回true)
boolean noneMatch(Predicate<? super T> predicate);

       match() 方法,可以用来判断 Stream 流中的数据是否匹配指定的条件。allMatch()、anyMatch()、noneMatch() 方法都是终结方法,返回值为 bollean。示例如下:

    public static void main(String[] args){
        Stream<Integer> stream01 = Stream.of(5, 3, 6, 1);
        boolean allMatch = stream01.allMatch(i -> i > 0);
        System.out.println("allMatch匹配:"+allMatch);

        Stream<Integer> stream02 = Stream.of(5, 3, 6, 1);
        boolean anyMatch = stream02 .anyMatch(i -> i > 5);
        System.out.println("anyMatch匹配:"+anyMatch);

        Stream<Integer> stream03 = Stream.of(5, 3, 6, 1);
        boolean noneMatch = stream03 .noneMatch(i -> i < 3);
        System.out.println("noneMatch匹配:"+noneMatch);
    }

11.max / min 

    Optional<T> max(Comparator<? super T> comparator);
    Optional<T> min(Comparator<? super T> comparator);

       max() 和 min() 方法,用来获取 Stream 流中的最大值和最小值。该接口需要一个 Comparator 函数式接口参数,根据指定排序规则来获取最大值,最小值。

       为了保证数据的准确性,此处排序规则需要是升序排序。因为:max() 方法获取的是排序后的最后一个值,min() 方法获取的是排序后的第一个值。如果使用降序排序后,那么 max() 和 min() 方法就相反了,就有异常了。示例如下:

    public static void main(String[] args){
        //max()
        Stream<Integer> stream01 = Stream.of(33, 11, 22, 5);
        Optional<Integer> max = stream01.max((i1, i2) -> i1 - i2);
        System.out.println("最大值:"+max.get());

        //min()
        Stream<Integer> stream02 = Stream.of(33, 11, 22, 5);
        Optional<Integer> min = stream02.min((i1, i2) -> i1 - i2);
        System.out.println("最小值:"+min.get());
    }

测试结果:

12.reduce 

//1.
Optional<T> reduce(BinaryOperator<T> accumulator);
//2.
T reduce(T identity, BinaryOperator<T> accumulator);
//3.
<U> U reduce(U identity,BiFunction<U, ? super T, U> accumulator,BinaryOperator<U> combiner);

     如果需要将 Sream 流中的所有数据,归纳得到一个数据的情况,可以使用 reduce() 方法。如果需要对 Stream 流中的数据进行求和操作、求最大/最小值等(都是归纳为一个数据的情况),此处就可以用到 reduce() 方法。示例如下

    public static void main(String[] args){
        //reduce():求和操作
        Stream<Integer> stream01 = Stream.of(4,3,5,6);
        Integer sum = stream01.reduce(0,(x,y)-> x + y);
        System.out.println("求和:"+sum);

        //reduce():求最大值操作
        Stream<Integer> stream03 = Stream.of(4,3,5,6);
        Integer max= stream03.reduce(0,(x,y)-> x > y ? x : y);
        System.out.println("最大值为:"+max);

        //reduce():求最小值操作
        Stream<Integer> stream02 = Stream.of(4,3,5,6);
        Optional<Integer> max1= stream02.reduce((x, y)-> x < y ? x : y);
        System.out.println("最小值为:"+max1.get());
    }

 测试结果: 

 结果分析:(求和分析) 

  1. 求和流程:

  2. 第一次:将默认值赋值给x,取出集合第一个元素赋值给y

  3. 第二步:将上一次返回的结果赋值给x,取出集合第二个元素赋值给y

  4. 第三步:继续执行第二步(如下图所示)

13.map 和 reduce 方法组合使用 

    map() 和 reduce() 方法组合使用,可以解决很多日常工作中遇到的问题。我们就从如下场景了解:

       场景一:现在有一个 Person 类,有两个属性:name 和 age,新建四个 Person类,然后完成如下操作:① 求出所有年龄的总和   ②求出 Person 类中的最大年龄

    public static void main(String[] args){
        BiFunction<String,Integer,Person> fn2 = Person::new;

        //1.求出所有年龄的总和(年龄为int值,默认为0,此处可以使用待默认值的reduce()方法)
        Stream<Person> stream01 = Stream.of(fn2.apply("刘德华", 58), fn2.apply("张学友", 56), fn2.apply("郭富城", 54), fn2.apply("黎明", 52));
        //基本写法:
        //Integer total = stream01.map(p -> p.getAge()).reduce(0,(x, y) -> x + y);
        //(方法引用)简化后:
        Integer total = stream01.map(p -> p.getAge()).reduce(0,Integer::sum);
        System.out.println("年龄总和为:"+total);

        //2.找出最大年龄
        Stream<Person> stream02 = Stream.of(fn2.apply("刘德华", 58), fn2.apply("张学友", 56), fn2.apply("郭富城", 54), fn2.apply("黎明", 52));
        //基本写法:        
        //Integer maxAge = stream02.map(p -> p.getAge()).reduce(0, (x, y) -> x > y ? x : y);
        //(方法引用)简化后:
        Integer maxAge = stream02.map(p -> p.getAge()).reduce(0, Integer::max);
        System.out.println("最大年龄为:"+maxAge);
    }

 测试结果 

    年龄总和为:220
    最大年龄为:58

 场景二:统计字符串 "a" 出现的次数

    public static void main(String[] args){
        Stream<String> stream03 = Stream.of("a", "b", "c", "d", "a", "c", "b", "a");
        //map() 和 reduce() 方法组合使用
        Integer aTotal = stream03.map(str -> {
            if (str == "a") {
                return 1;
            } else {
                return 0;
            }
        }).reduce(0, Integer::sum);
        System.out.println("a次数:"+aTotal);
    }

 14.mapToInt / mapToDouble / mapToLong

//mapToInt()
IntStream mapToInt(ToIntFunction<? super T> mapper);
//mapToLong()
LongStream mapToLong(ToLongFunction<? super T> mapper);
//mapToDouble()
DoubleStream mapToDouble(ToDoubleFunction<? super T> mapper);

  我们通过 Stream<Integer>  stream = Stream.of(1,2,3,4,5); 这种方式,返回值为 Stream<Integer> 这种包装类的泛型,这种方式虽然用起来没有问题,但是它在效率上还是存在着一定的问题。

       当我们将一对数字转成 Stream 流时,因为泛型的原因,只能使用 Integer 包装类。会先把这些数字包装成 Integer 类

//1.Integer是一个类,占用的内存肯定比 int 大
//2.Stream流在操作时,会存在自动装箱和拆箱操作
Stream<Integer> stream = Stream.of(2,3,5,6,7);
 
//把大于3的打印出来(num在Stream流中是Integer类型,在与3比较时,显然会存在自动拆装箱问题),效率会有影响
stream.filter(num -> num > 3).forEach(System.out::println);

       所以在 JDK8 中,对 Stream 流还新增了一个 mapToInt()方法。该方法可以将流中操作的 Integer 包装类,在 Stream 流中转换成直接来操作 int 类型,效率明显会高一点。

示例如下:

    public static void main(String[] args){
        //使用 mapToInt()方法
        IntStream intStream = Stream.of(1, 2, 3, 4, 5, 6).mapToInt((Integer num) -> {
            return num.intValue();
        });

        //(使用方法引用)简化后
        IntStream intStream1 = Stream.of(1, 2, 3, 4, 5, 6).mapToInt(Integer::intValue);

        intStream1.filter(n->n>3).forEach(System.out::println);
        /**
         * 使用mapToInt(),返回值是一个IntStream类型.我们看一下它们的继承结构图(如下所示):
         * IntStream 和 Stream<Integer> 类型进行比较。发现他们都继承自 BaseStream。所以它们区别不大
         * 只不过 IntStream 内部操作的是 int 基本类型的数据,省去自动拆装箱过程。从而可以节省内存开销
         */
    }

 继承结构图:

提示:

        mapToDouble() / mapToLong() 的使用,与 mapToInt()一致,此处不再介绍。

15.concat 

public static <T> Stream<T> concat(Stream<? extends T> a, Stream<? extends T> b) {
    Objects.requireNonNull(a);
    Objects.requireNonNull(b);
 
    @SuppressWarnings("unchecked")
    Spliterator<T> split = new Streams.ConcatSpliterator.OfRef<>(
        (Spliterator<T>) a.spliterator(), (Spliterator<T>) b.spliterator());
    Stream<T> stream = StreamSupport.stream(split, a.isParallel() || b.isParallel());
    return stream.onClose(Streams.composedClose(a, b));
}

 concat() 方法,可以将两个Stream流合并成一个流进行返回。如果是三个流,则需要两两合并,不能一次性合并三个流。concat() 方法是 Stream 接口的静态方法,我们可以直接使用类名.方法名】调用。

注意:concat() 方法此处接收的是 Stream 类型,不能接收 IntStream 等类型。concat() 是一个静态方法,与 java.lang.String 中的 concat() 方法是不同的。

    public static void main(String[] args){
        //concat()方法
        Stream<Integer> aStream = Stream.of(1, 2, 3);
        Stream<Integer> bStream = Stream.of(4, 5, 6);

        Stream<Integer> concatStream = Stream.concat(aStream, bStream);
        concatStream.forEach(System.out::println);
    }

 测试结果:

16.peek 

介绍:该方法会生成一个包含原 Stream 的所有元素的新 Stream,同时会提供一个消费函数(Consumer实例),新Stream每个元素被消费的时候都会执行给定的消费函数 

存在此方法的目的,主要是为了在您需要的地方支持调试,查看元素流过管道中特定点的情况

主要用于开发过程中调试使用!!!

    public static void main(String[] args){
        List<String> list = Stream.of("one", "two", "three", "four")
                .filter(e -> e.length() > 3)
                .peek(e -> System.out.println("大于三---" + e))
                .map(String::toUpperCase)
                .peek(e -> System.out.println("转大写---" + e))
                .collect(Collectors.toList());
    }

 17.allMatch / anyMatch / noneMatch 匹配相关

这三个方法,均返回 boolean 类型 

allMatch:是不是Stream中的所有元素都满足给定的匹配条件
anyMatch:Stream中是否存在任何一个元素满足匹配条件
noneMatch:是不是Stream中的所有元素都不满足给定的匹配条件
    public static void main(String[] args) {
// Stream中元素,所有元素长度都>2
        boolean flag = Stream.of("one", "two", "three", "four").allMatch(str -> str.length() > 2);
        System.out.println(flag);     // 返回值:true

// Stream中元素,是不是存在任何一个元素长度>4
        boolean flag1 = Stream.of("one", "two", "three", "four").anyMatch(str -> str.length() > 4);
        System.out.println(flag1);     // 返回值:true

// Stream中元素,所有元素长度没有一个元素<1
        boolean flag2 = Stream.of("one", "two", "three", "four").noneMatch(str -> str.length() < 1);
        System.out.println(flag2);     // 返回值:true
    }

 

18.findFirst / findAny 

findFirst:返回Stream中的第一个元素,如果Stream为空,返回空Optional
findAny:返回的元素是不确定的,对于同一个列表多次调用findAny()有可能会返回不同的值。使用findAny()是为了更高效的性能。如果是数据较少,串行地情况下,一般会返回第一个结果,如果是并行的情况,那就不能确保是第一个
    public static void main(String[] args) {
        Optional<String> first = Stream.of("one", "two", "three", "four").findFirst();
        System.out.println(first.get());

        Optional<String> any = Stream.of("one", "two", "three", "four").findAny();
        System.out.println(any.get());

        Optional<String> any1 = Stream.of("one", "two", "three", "four").parallel().findAny();
        System.out.println(any1.get());
        
    }

 

 19.collect

collect() 方法的使用,也有很多内容学习,此处内容过多,不做一一列举。

       如需了解 Stream 流 collect() 方法的使用介绍,你可以看博主下一文章学习了解。请点击如下链接跳转:JDK8新特性(二):Stream流 collect() 方法的详细使用介绍

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/341175.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

DEB方式安装elastic search7以及使用

参考&#xff1a;https://www.cnblogs.com/anech/p/15957607.html 1、安装elastic search7 #手动下载安装 wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-7.17.1-amd64.deb wget https://artifacts.elastic.co/downloads/elasticsearch/elastics…

ERP系统哪个好用?用友,金蝶,ORACLE,SAP综合测评

ERP系统哪个好用&#xff1f;用友&#xff0c;金蝶&#xff0c;ORACLE&#xff0c;SAP综合测评 ERP领域SAP、ORACLE相对于国内厂商如用友、金蝶优势在哪&#xff1f; SAP&#xff0c;ORACLE操作习惯一般国人用不惯&#xff1b;相对于国产软件&#xff0c;界面也很难看&#x…

JUC并发编程-常用的多线程操作辅助类(必会)、读写锁、阻塞队列

8. 常用的辅助类(必会) 1&#xff09;CountDownLatch CountDownLatch: 减法计数器 CountDownLatch是一个同步辅助类&#xff0c;在多线程环境中用于控制线程的执行顺序。它可以让一个或多个线程等待其他线程完成一组操作后再继续执行。 CountDownLatch通过一个计数器来实现&…

OCP NVME SSD规范解读-7.TCG安全日志要求

在OCP NVMe SSD规格中&#xff0c;TCG的相关内容涉及以下几个方面&#xff1a; 活动事件记录&#xff1a; NVMe SSD需要支持记录TCG相关的持久事件日志&#xff0c;用于追踪固态硬盘上发生的与TCG安全功能相关的关键操作或状态变化&#xff0c;如启动过程中的安全初始化、密钥…

前端基础(三十八):iframe通信、浏览器跨窗口通信

iframe通信 - MessageChannel <!-- index.html --> <h3>MessageChannel</h3> <input id"input" type"text" oninput"handleInput(this.value)" /> <hr /> <iframe src"./demo.html"></iframe&…

HarmonyOS鸿蒙学习基础篇 - 运行第一个程序 Hello World

下载与安装DevEco Studio 古话说得好&#xff0c;“磨刀不误砍柴工”&#xff0c;对于HarmonyOS应用开发&#xff0c;我们首先得确保工具齐全。这就好比要进行HarmonyOS应用开发&#xff0c;我们需要确保已经安装了DevEco Studio&#xff0c;这是HarmonyOS的一站式集成开发环境…

打开json文件,读取里边的每一行数据,每一行数据是一个字典,使用matplotlib画图

这段代码的目的是读取 JSON 文件&#xff0c;提取关键信息&#xff0c;然后使用 Matplotlib 绘制四个子图&#xff0c;分别显示不同的指标随着 iter 变化的情况。这种图形化分析有助于直观地了解模型的性能。 画图结果如下&#xff1a; json文件格式如下&#xff1a;下面只粘贴…

linux邮件报警脚本

在日常的运维工作中&#xff0c;我们经常会对服务器的磁盘使用情况进行巡检&#xff0c;以防止磁盘爆满导致的业务故障. 如果能编写一个合理完善的监控脚本&#xff0c;当磁盘使用率达到我们设置的阀值时&#xff0c;就自动发送报警邮件&#xff0c;以便我们及时获悉到快爆满的…

【人工智能大脑】仿生学与人工智能交汇:基于MP神经网络的精准农业实践

MP神经网络&#xff0c;即McCulloch-Pitts模型&#xff08;MCP Model&#xff09;&#xff0c;是神经网络的早期形式之一&#xff0c;由Warren McCulloch和Walter Pitts在1943年提出。这个模型为现代人工神经网络的发展奠定了理论基础&#xff0c;并首次尝试模拟了生物神经元的…

导出 MySQL 数据库表结构、数据字典word设计文档

一、第一种 &#xff1a;利用sql语句查询 需要说明的是该方法应该适用很多工具&#xff0c;博主用的是navicat SELECT TABLE_NAME 表名,( i : i 1 ) AS 序号,COLUMN_NAME 列名, COLUMN_TYPE 数据类型, DATA_TYPE 字段类型, CHARACTER_MAXIMUM_LENGTH 长度, IS_NULLABLE…

docker容器快速安装启动ES

1、安装 docker a、使用 Homebrew 安装 brew install --cask --appdir/Applications docker b、手动下载安装 1、安装包下载地址&#xff1a;Install Docker Desktop on Mac | Docker Docs 根据自己的笔记本型号选择&#xff0c;我这边选择的是 intel chip 2、下载安装即可&a…

1.11马原总复习PART1

哲学不都是科学的 资本主义基本矛盾是 生产资料私有占有和生产社会化之间的矛盾&#xff1b;生产资料私有占有和生产社会化之间的矛盾 凝聚力量&#xff0c;思想保证&#xff0c;精神动力&#xff0c;智力支持 绝对剩余价值&#xff0c;必要劳动时间不变&#xff0c;绝对延长…

【前端相关】elementui使用el-upload组件实现自定义上传

elementui使用el-upload组件实现自定义上传 一、问题描述二、实现方式三、实现步骤3.1 方式一&#xff1a;选择后自动上传3.2 方式二&#xff1a;选择图片后手动上传3.3 拓展&#xff1a;上传文件夹 四、服务器相关接口 一、问题描述 elmentui 中的upload默认的提交行为是通过…

【蓝桥杯--图论】Dijkstra、Ballman-Ford、Spfa、Floyd

今日语录&#xff1a;每一次挑战都是一次成长的机会 文章目录 朴素DIjkstra堆优化的DijkstraBallman-FordFloydSpfa(求最短路)Spfa&#xff08;求是否含有负权&#xff09; 如上所示即为做题时应对的方法 朴素DIjkstra 引用与稠密图&#xff0c;即m<n^2 #include<iostrea…

MySQL JSON数据类型

在日常开发中&#xff0c;我们经常会在 MySQL 中使用 JSON 字段&#xff0c;比如很多表中都有 extra 字段&#xff0c;用来记录一些特殊字段&#xff0c;通过这种方式不需要更改表结构&#xff0c;使用相对灵活。 目前对于 JSON 字段的实践各个项目不尽相同&#xff0c;MySQL 表…

面试经典 150 题 - 多数元素

多数元素 给定一个大小为 n 的数组 nums &#xff0c;返回其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋ 的元素。 你可以假设数组是非空的&#xff0c;并且给定的数组总是存在多数元素。 示例 1&#xff1a; 输入&#xff1a;nums [3,2,3] 输出&#xff1…

C#,入门教程(28)——文件夹(目录)、文件读(Read)与写(Write)的基础知识

上一篇&#xff1a; C#&#xff0c;入门教程(27)——应用程序&#xff08;Application&#xff09;的基础知识https://blog.csdn.net/beijinghorn/article/details/125094837 C#知识比你的预期简单的多&#xff0c;但也远远超乎你的想象&#xff01; 与文件相关的知识&#xf…

点亮流水灯

目录 1.water_led 2.tb_water_led 50MHZ一个周期是20ns,0.5秒就是20ns0.02um0.00002ms0.000_00002s。0.5/0.000_00002s25_000_000个时钟周期&#xff0c;表示要从0计数到24_999_999 LED灯是低电平点亮&#xff0c;前0.5秒点亮第一个LED灯&#xff0c;当检测到脉冲信号点亮第二…

向量点乘(内积)

向量点乘&#xff1a;&#xff08;内积&#xff09; 点乘&#xff08;Dot Product&#xff09;的结果是点积&#xff0c;又称数量积或标量积&#xff08;Scalar Product&#xff09;。 几何意义&#xff1a; 点乘和叉乘的区别 向量乘向量得到一个数为点乘 向量乘向量得到一个…

对读取的Excel文件数据进行拆分并发请求发送到后端服务器

首先&#xff0c;我们先回顾一下文件的读取操作&#xff1a; 本地读取Excel文件并进行数据压缩传递到服务器-CSDN博客 第一步&#xff1a;根据以上博客&#xff0c;我们将原先的handleFile方法&#xff0c;改为以下内容&#xff1a; const handleFile async(e) > {conso…