100天精通Python(实用脚本篇)——第113天:基于Tesseract-OCR实现OCR图片文字识别实战

文章目录

  • 专栏导读
  • 1. OCR技术介绍
  • 2. 模块介绍
  • 3. 模块安装
  • 4. 代码实战
    • 4.1 英文图片测试
    • 4.2 数字图片测试
    • 4.3 中文图片识别
  • 书籍分享

专栏导读

🔥🔥本文已收录于《100天精通Python从入门到就业》:本专栏专门针对零基础和需要进阶提升的同学所准备的一套完整教学,从0到100的不断进阶深入,后续还有实战项目,轻松应对面试,专栏订阅地址:https://blog.csdn.net/yuan2019035055/category_11466020.html

  • 优点订阅限时9.9付费专栏进入千人全栈VIP答疑群,作者优先解答机会(代码指导、远程服务),群里大佬众多可以抱团取暖(大厂内推机会)
  • 专栏福利简历指导、招聘内推、每周送实体书、80G全栈学习视频、300本IT电子书:Python、Java、前端、大数据、数据库、算法、爬虫、数据分析、机器学习、面试题库等等
    在这里插入图片描述
    在这里插入图片描述

1. OCR技术介绍

OCR,即光学字符识别(Optical Character Recognition),是一种将印刷体字符转化为计算机可读文字的技术。OCR技术可以将纸质文档、扫描文档、照片等转化为可编辑的电子文件,方便用户进行编辑、存储和共享。

OCR技术的应用范围非常广泛。例如,银行和保险公司可以使用OCR技术来处理各种表格和文件,包括支票、发票、合同等,从而提高办公效率。医院可以使用OCR技术来处理病历、处方和医学报告,从而提高医疗质量和效率。政府机构可以使用OCR技术来处理各种表格和文件,例如税务申报表、选民登记表等,从而提高政府服务的效率和质量。

OCR技术的原理是利用光学扫描仪将纸质文档转化为数字图像,然后通过图像处理算法将图像中的字符识别出来,并转化为计算机可读的文字。OCR技术的核心是字符识别算法,这个算法需要考虑到各种字体、字号、字距、倾斜度、噪声等因素。

OCR技术的发展历史可以追溯到20世纪50年代,当时的OCR技术只能处理单一字体、字号、字距的文本。随着计算机技术的不断发展,OCR技术也不断进步,现在的OCR技术能够处理各种字体、字号、字距、倾斜度、噪声等复杂条件下的文本,并且具备高精度和高速度的特点。

总之,OCR技术是一种非常实用的技术,可以帮助用户将纸质文档转化为电子文件,从而提高办公效率和工作质量。随着计算机技术的不断进步,OCR技术也将不断发展,为用户提供更加高效和便捷的服务。

2. 模块介绍

Tesseract OCR(Optical Character Recognition)是一个免费的开源OCR引擎,由Google开发和维护。它能够识别图像中的文本,并将其转换为可编辑和可搜索的文本格式。Tesseract支持超过100种语言的文本识别,并且具有高度的准确性和可扩展性。

3. 模块安装


1、安装Tesseract、Tesseract、Pillow模块,可以使用以下命令:

pip install pytesseract
pip install pillow
pip install tesseract-ocr # 如果这个安装报错就用下面的手动安装方法

2、从网上找到相应的‘Tesseract-OCR’下载安装(自行寻找对应版本):https://digi.bib.uni-mannheim.de/tesseract/
在这里插入图片描述

3、无脑默认安装即可

4、安装后的默认文件路径为(这里使用的是Windows版本)C:\Program Files\Tesseract-OCR\

在这里插入图片描述

4. 代码实战

4.1 英文图片测试

1. 测试图片准备:

在这里插入图片描述

2、修改下面的Tesseract-OCR的安装路径和图片路径:

import cv2
import pytesseract

# 1. 找到Tesseract-OCR的安装路径
pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'

# 2. 图片的路径(注意:图片路径不能有中文
img = cv2.imread(r'English.png')

# 3. 对图片进行灰度处理
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 4. 提取字符串
text = pytesseract.image_to_string(gray)

# 5. 打印字符串
print(text)

3、运行结果,识别成功:
在这里插入图片描述

4.2 数字图片测试

  1. 测试图片准备:

在这里插入图片描述

2、修改下面的Tesseract-OCR的安装路径和图片路径:

import cv2
import pytesseract

# 1. 找到Tesseract-OCR的安装路径
pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'

# 2. 图片的路径(注意:图片路径不能有中文
img = cv2.imread(r'number.png')

# 3. 对图片进行灰度处理
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 4. 提取字符串
text = pytesseract.image_to_string(gray)

# 5. 打印字符串
print(text)

3、运行结果,识别成功:

在这里插入图片描述

4.3 中文图片识别

注意:上面的代码不能直接识别中文,我们需要下载中文语言包

1、下载下面的4个中文语言包文件,复制到Tesseract-OCR安装目录tessdata文件夹里:https://gitcode.com/tesseract-ocr/tessdata/overview

chi_sim.traineddata
chi_sim_vert.traineddata
chi_tra.traineddata
chi_tra_vert.traineddata

在这里插入图片描述

网速慢的小伙伴们,博主这里为大家下载好了,搜索公众号:袁袁袁袁满,回复:tessdata,即可:

在这里插入图片描述

2、将下载好的中文语言包复制在Tesseract-ocr安装路径的tessdata文件夹里:

在这里插入图片描述

3、准备图片:

在这里插入图片描述

4、与之前代码区别在于设置了中文语言包:

import cv2
import pytesseract

# 1. 找到Tesseract-OCR的安装路径
pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'

# 2. 图片的路径(注意:图片路径不能有中文
img = cv2.imread(r'Chinese.png')

# 3. 对图片进行灰度处理
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 4. 提取字符串,并设置为中文
lang = 'chi_sim'
text = pytesseract.image_to_string(gray,lang)

# 5. 打印字符串
print(text)

5、运行结果,提取成功:
在这里插入图片描述

书籍分享

《Web前端开发全程实战》
在这里插入图片描述

《Web前端开发全程实战——HTML5+CSS3+JavaScript+jQuery+Bootstrap》从初学者角度出发,结合大量实例讲解了如何使用HTML5、CSS3、JavaScript、jQuery、Ajax、Boostrap、Vue、PHP 等基本技术搭建Web 前端,力求向读者提供一套极简的Web 前端一站式高效学习方案。全书共28 章,内容包括HTML5基础、设计HTML5 文档结构、设计HTML5 文本、设计HTML5 图像和多媒体、设计列表和超链接、设计表格和表单、CSS3 基础、设计文本样式、设计特效和动画样式、CSS 页面布局、JavaScript 基础、处理字符串、使用数组、使用函数、使用对象、jQuery 基础、文档操作、事件处理、使用Ajax、CSS 样式操作、jQuery 动画、Bootstrap基础、CSS 组件、JavaScript 插件、使用Vue、PHP 基础、使用PHP 与网页交互、使用PDO 操作数据库、项目实战。书中所有知识点均结合具体实例展开讲解,代码注释详尽,可使读者轻松掌握前端技术精髓,提升实际开发能力。

本书特色:30万+读者体验,畅销丛书新增精品;10年开发教学经验,一线讲师半生心血。

京东地址:https://item.jd.com/13512401.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/339613.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Flowable 生成流程图

/*** 生成流程图** param processId 任务ID*/ RequestMapping("/diagram/{processId}") public void genProcessDiagram(HttpServletResponse response,PathVariable("processId") String processId) {InputStream inputStream flowTaskService.diagram(p…

redis优化系列(六)

本期分享redis内存过期策略:过期key的处理 Redis之所以性能强,最主要的原因就是基于内存存储。然而单节点的Redis其内存大小不宜过大,会影响持久化或主从同步性能。 可以通过修改配置文件来设置Redis的最大内存: maxmemory 1gb …

[翻译] Vulkan-Sample-MSAA (Multisample anti-aliasing)

原文 Aliasing是以低于原始信号采样率的采样率进行采样导致的。在图形学中,这个过程可以描述为:基于一个会产生artifacts的分辨率去计算像素值,从而在模型边缘产生锯齿。多重采样抗锯齿(Multisample anti-aliasing,MS…

vivado 接口、端口映射

接口 重要&#xff01;接口只能在“fpga”类型的&#xff1c;component&#xff1e;中定义。接口部分提供了<component>上所有可用物理接口的列表。<interfaces>部分包含嵌套在其中的一个或多个<interface>标记。一个接口是通过使用<port_map>标记由多…

[pytorch入门] 3. torchvision中的transforms

torchvision中的transforms 是transforms.py工具箱&#xff0c;含有totensor、resize等工具 用于将特定格式的图片转换为想要的图片的结果&#xff0c;即用于图片变换 用法 在transforms中选择一个类创建对象&#xff0c;使用这个对象选择相应方法进行处理 能够选择的类 列…

股东出资透明度提升:企业股东出资信息API的应用

前言 在当今商业环境中&#xff0c;股东出资信息的透明度对于投资者、监管机构以及企业自身的健康发展至关重要。随着企业信息公开化的推进&#xff0c;企业股东出资信息API应运而生&#xff0c;为各方提供了一个便捷、高效的信息获取渠道。本文将探讨企业股东出资信息API如何…

【动态规划】【广度优先搜索】【状态压缩】847 访问所有节点的最短路径

作者推荐 视频算法专题 本文涉及知识点 动态规划汇总 广度优先搜索 状态压缩 LeetCode847 访问所有节点的最短路径 存在一个由 n 个节点组成的无向连通图&#xff0c;图中的节点按从 0 到 n - 1 编号。 给你一个数组 graph 表示这个图。其中&#xff0c;graph[i] 是一个列…

03.时间轮

时间轮 1.为什么需要时间轮 海量的定时任务下&#xff0c;小顶堆时间复杂度比较高&#xff0c;性能差 2.时间轮是什么 时间轮这个技术其实出来很久了&#xff0c;在kafka、zookeeper、Netty、Dubbo等高性能组件中都有时间轮使用的方式 时间轮&#xff0c;从图片上来看&…

自定义数据集 - Dataset

文章目录 1. PASCAL VOC格式 划分训练集和验证集2. 自定义dataset 1. PASCAL VOC格式 划分训练集和验证集 import os import randomdef main():random.seed(0) # 设置随机种子&#xff0c;保证随机结果可复现files_path "./VOCdevkit/VOC2012/Annotations" # 指定…

Sentinel限流规则支持流控效果

流控效果是指请求达到流控阈值时应该采取的措施&#xff0c;包括三种&#xff1a; 1.快速失败&#xff1a;达到阈值后&#xff0c;新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。 2.warm up&#xff1a;预热模式&#xff0c;对超出阈值的请求同样是拒绝并抛…

网络安全的信息收集方法有哪些?

网络安全攻击中的信息收集是攻击者为了了解目标系统的弱点、配置、环境和潜在的防御措施而进行的活动。以下是一些常见的信息收集手段&#xff1a; 开放网络资源查询&#xff1a; 使用搜索引擎查找关于目标组织的信息&#xff0c;包括新闻稿、社交媒体帖子、官方网站等。通过W…

答案之书程序

答案之书程序 需求&#xff1a;用户输入手机号码后4位或者生日&#xff0c;自动生成答案之书对应答案 效果图 C#代码实现过程 using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq;…

新买电脑配置不低却卡顿?

目录 前言&#xff1a; 电脑卡顿的原因 Windows 10必做的系统优化 禁用 IP Helper 关闭系统通知 机械硬盘开启优化驱动器功能 开启存储感知 前言&#xff1a; 新买的电脑配置不低&#xff0c;但却卡顿甚至程序不反应&#xff0c;这是怎么回事儿&#xff1f; 其实并不…

获取主流电商平台商品价格,库存信息,数据分析,SKU详情

要接入API接口以采集电商平台上的商品数据&#xff0c;可以按照以下步骤进行&#xff1a; 1、找到可用的API接口&#xff1a;首先&#xff0c;需要找到支持查询商品信息的API接口。这些信息通常可以在电商平台的官方文档或开发者门户网站上找到。 2、注册并获取API密钥&#x…

【代码随想录算法训练营第二十四天|回溯算法的理论基础、77. 组合】

代码随想录算法训练营第二十四天|回溯算法的理论基础、77. 组合 回溯算法的理论基础77. 组合 回溯算法的理论基础 这里我觉得《代码随想录》和y总的课都比较好了 《代码随想录》 &#xff1a; https://programmercarl.com/0077.%E7%BB%84%E5%90%88%E4%BC%98%E5%8C%96.html#%E5…

成人高考和自考到底应该选哪个呢?

在成人学历提升的各项方式之中 成人高考与自学考试经常会被人拿来对比 但它们之间的差别在哪里 又分别去适合什么类型的考生 成考自考报名一般8月底开始&#xff0c;要准备考试的考生需要提前做好准备了哦 成考自考报名都需要上传证件照&#xff0c;而且都很严格 大家可使用小程…

react 页签(自行封装)

思路&#xff1a;封装一个页签组件&#xff0c;包裹页面组件&#xff0c;页面渲染之后把数据缓存到全局状态实现页面缓存。 浏览本博客之前先看一下我的博客实现的功能是否满足需求&#xff0c;实现功能&#xff1a; - 页面缓存 - 关闭当前页 - 鼠标右键>关闭当前 - 鼠标右…

启发式教学是什么

学生们在上课时看似认真听讲&#xff0c;但是在下课后却一片茫然&#xff0c;不知道你讲了什么内容&#xff1f;这是因为你可能使用了传统的教学方法&#xff0c;而不是启发式教学。 启发式教学是指老师在教育教学中&#xff0c;采用引导、启示、激发等手段&#xff0c;调动学…

主板电路学习; 华硕ASUS K43SD笔记本安装win7X64(ventoy)

记录 老爷机 白色 华硕 K43SD 笔记本 安装 win7X64 1. MBR样式常规安装win7X64Sp1 (华硕 K43SD 安装 win7X64 ) 老爷机 白色 华硕 K43SD 笔记本 安装 win7X64 &#xff08;常规安装&#xff09; 设置&#xff1a; 禁用UEFI 启用AHCI ventoy制作MBR&#xff08;非UEFI&#…

安全防御-基础认知

目录 安全风险能见度不足&#xff1a; 常见的网络安全术语 &#xff1a; 常见安全风险 网络的基本攻击模式&#xff1a; 病毒分类&#xff1a; 病毒的特征&#xff1a; 常见病毒&#xff1a; 信息安全的五要素&#xff1a; 信息安全的五要素案例 网络空间&#xff1a…