redis优化系列(六)

本期分享redis内存过期策略:过期key的处理

Redis之所以性能强,最主要的原因就是基于内存存储。然而单节点的Redis其内存大小不宜过大,会影响持久化或主从同步性能。 可以通过修改配置文件来设置Redis的最大内存:

maxmemory 1gb

当内存使用达到上限时,就无法存储更多数据了。为了解决这个问题,Redis提供了一些策略实现内存回收:

内存过期策略

在学习Redis缓存的时候我们说过,可以通过expire命令给Redis的key设置TTL(存活时间):

可以发现,当key的TTL到期以后,再次访问name返回的是nil,说明这个key已经不存在了,对应的内存也得到释放。从而起到内存回收的目的。

Redis本身是一个典型的key-value内存存储数据库,因此所有的key、value都保存在之前学习过的Dict结构中。不过在其database结构体中,有两个Dict:一个用来记录key-value;另一个用来记录key-TTL。

这里有两个问题需要我们思考: Redis是如何知道一个key是否过期呢?

答:利用两个Dict分别记录key-value对及key-ttl对

是不是TTL到期就立即删除了呢?

惰性删除

惰性删除:顾明思议并不是在TTL到期后就立刻删除,而是在访问一个key的时候,检查该key的存活时间,如果已经过期才执行删除。

周期删除

周期删除:顾明思议是通过一个定时任务,周期性的抽样部分过期的key,然后执行删除。执行周期有两种: Redis服务初始化函数initServer()中设置定时任务,按照server.hz的频率来执行过期key清理,模式为SLOW Redis的每个事件循环前会调用beforeSleep()函数,执行过期key清理,模式为FAST

SLOW模式规则:
  • 执行频率受server.hz影响,默认为10,即每秒执行10次,每个执行周期100ms。

  • 执行清理耗时不超过一次执行周期的25%.默认slow模式耗时不超过25ms

  • 逐个遍历db,逐个遍历db中的bucket,抽取20个key判断是否过期

  • 如果没达到时间上限(25ms)并且过期key比例大于10%,再进行一次抽样,否则结束

Fast模式规则
  • FAST模式规则(过期key比例小于10%不执行 ):

  • 执行频率受beforeSleep()调用频率影响,但两次FAST模式间隔不低于2ms

  • 执行清理耗时不超过1ms

  • 逐个遍历db,逐个遍历db中的bucket,抽取20个key判断是否过期 如果没达到时间上限(1ms)并且过期key比例大于10%,再进行一次抽样,否则结束

小总结:

RedisKey的TTL记录方式:

在RedisDB中通过一个Dict记录每个Key的TTL时间

过期key的删除策略:

惰性清理:每次查找key时判断是否过期,如果过期则删除

定期清理:定期抽样部分key,判断是否过期,如果过期则删除。 定期清理的两种模式:

SLOW模式执行频率默认为10,每秒执行10次,每次不超过25ms

FAST模式执行频率不固定,但两次间隔不低于2ms,每次耗时不超过1ms

Redis内存回收-内存淘汰策略

内存淘汰:就是当Redis内存使用达到设置的上限时,主动挑选部分key删除以释放更多内存的流程。Redis会在处理客户端命令的方法processCommand()中尝试做内存淘汰:

淘汰策略

Redis支持8种不同策略来选择要删除的key:

  • noeviction: 不淘汰任何key,但是内存满时不允许写入新数据,默认就是这种策略。

  • volatile-ttl: 对设置了TTL的key,比较key的剩余TTL值,TTL越小越先被淘汰

  • allkeys-random:对全体key ,随机进行淘汰。也就是直接从db->dict中随机挑选

  • volatile-random:对设置了TTL的key ,随机进行淘汰。也就是从db->expires中随机挑选。

  • allkeys-lru: 对全体key,基于LRU算法进行淘汰

  • volatile-lru: 对设置了TTL的key,基于LRU算法进行淘汰

  • allkeys-lfu: 对全体key,基于LFU算法进行淘汰

  • volatile-lfu: 对设置了TTL的key,基于LFI算法进行淘汰 比较容易混淆的有两个:

    • LRU(Least Recently Used),最少最近使用。用当前时间减去最后一次访问时间,这个值越大则淘汰优先级越高。

    • LFU(Least Frequently Used),最少频率使用。会统计每个key的访问频率,值越小淘汰优先级越高。

Redis的数据都会被封装为RedisObject结构:

LFU的访问次数之所以叫做逻辑访问次数,是因为并不是每次key被访问都计数,而是通过运算:

  • 生成0~1之间的随机数R

  • 计算 (旧次数 * lfu_log_factor + 1),记录为P

  • 如果 R < P ,则计数器 + 1,且最大不超过255

  • 访问次数会随时间衰减,距离上一次访问时间每隔 lfu_decay_time 分钟,计数器 -1

优先使用 allkeys-lru 策略。充分利用 LRU 算法的优势,把最近最常访问的数据留在缓存中。如果业务有明显的冷热数据区分,建议使用。

如果业务中数据访问频率差别不大,没有明显冷热数据区分,建议使用 allkeys-random,随机选择淘汰。

如果业务中有置顶的需求,可以使用 volatile-lru 策略,同时置顶数据不设置过期时间,这些数据就一直不被删除,会淘汰其他设置过期时间的数据。

如果业务中有短时高频访问的数据,可以使用 allkeys-lfu 或 volatile-lfu 策略。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/339609.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[翻译] Vulkan-Sample-MSAA (Multisample anti-aliasing)

原文 Aliasing是以低于原始信号采样率的采样率进行采样导致的。在图形学中&#xff0c;这个过程可以描述为&#xff1a;基于一个会产生artifacts的分辨率去计算像素值&#xff0c;从而在模型边缘产生锯齿。多重采样抗锯齿&#xff08;Multisample anti-aliasing&#xff0c;MS…

vivado 接口、端口映射

接口 重要&#xff01;接口只能在“fpga”类型的&#xff1c;component&#xff1e;中定义。接口部分提供了<component>上所有可用物理接口的列表。<interfaces>部分包含嵌套在其中的一个或多个<interface>标记。一个接口是通过使用<port_map>标记由多…

[pytorch入门] 3. torchvision中的transforms

torchvision中的transforms 是transforms.py工具箱&#xff0c;含有totensor、resize等工具 用于将特定格式的图片转换为想要的图片的结果&#xff0c;即用于图片变换 用法 在transforms中选择一个类创建对象&#xff0c;使用这个对象选择相应方法进行处理 能够选择的类 列…

股东出资透明度提升:企业股东出资信息API的应用

前言 在当今商业环境中&#xff0c;股东出资信息的透明度对于投资者、监管机构以及企业自身的健康发展至关重要。随着企业信息公开化的推进&#xff0c;企业股东出资信息API应运而生&#xff0c;为各方提供了一个便捷、高效的信息获取渠道。本文将探讨企业股东出资信息API如何…

【动态规划】【广度优先搜索】【状态压缩】847 访问所有节点的最短路径

作者推荐 视频算法专题 本文涉及知识点 动态规划汇总 广度优先搜索 状态压缩 LeetCode847 访问所有节点的最短路径 存在一个由 n 个节点组成的无向连通图&#xff0c;图中的节点按从 0 到 n - 1 编号。 给你一个数组 graph 表示这个图。其中&#xff0c;graph[i] 是一个列…

03.时间轮

时间轮 1.为什么需要时间轮 海量的定时任务下&#xff0c;小顶堆时间复杂度比较高&#xff0c;性能差 2.时间轮是什么 时间轮这个技术其实出来很久了&#xff0c;在kafka、zookeeper、Netty、Dubbo等高性能组件中都有时间轮使用的方式 时间轮&#xff0c;从图片上来看&…

自定义数据集 - Dataset

文章目录 1. PASCAL VOC格式 划分训练集和验证集2. 自定义dataset 1. PASCAL VOC格式 划分训练集和验证集 import os import randomdef main():random.seed(0) # 设置随机种子&#xff0c;保证随机结果可复现files_path "./VOCdevkit/VOC2012/Annotations" # 指定…

Sentinel限流规则支持流控效果

流控效果是指请求达到流控阈值时应该采取的措施&#xff0c;包括三种&#xff1a; 1.快速失败&#xff1a;达到阈值后&#xff0c;新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。 2.warm up&#xff1a;预热模式&#xff0c;对超出阈值的请求同样是拒绝并抛…

网络安全的信息收集方法有哪些?

网络安全攻击中的信息收集是攻击者为了了解目标系统的弱点、配置、环境和潜在的防御措施而进行的活动。以下是一些常见的信息收集手段&#xff1a; 开放网络资源查询&#xff1a; 使用搜索引擎查找关于目标组织的信息&#xff0c;包括新闻稿、社交媒体帖子、官方网站等。通过W…

答案之书程序

答案之书程序 需求&#xff1a;用户输入手机号码后4位或者生日&#xff0c;自动生成答案之书对应答案 效果图 C#代码实现过程 using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq;…

新买电脑配置不低却卡顿?

目录 前言&#xff1a; 电脑卡顿的原因 Windows 10必做的系统优化 禁用 IP Helper 关闭系统通知 机械硬盘开启优化驱动器功能 开启存储感知 前言&#xff1a; 新买的电脑配置不低&#xff0c;但却卡顿甚至程序不反应&#xff0c;这是怎么回事儿&#xff1f; 其实并不…

获取主流电商平台商品价格,库存信息,数据分析,SKU详情

要接入API接口以采集电商平台上的商品数据&#xff0c;可以按照以下步骤进行&#xff1a; 1、找到可用的API接口&#xff1a;首先&#xff0c;需要找到支持查询商品信息的API接口。这些信息通常可以在电商平台的官方文档或开发者门户网站上找到。 2、注册并获取API密钥&#x…

【代码随想录算法训练营第二十四天|回溯算法的理论基础、77. 组合】

代码随想录算法训练营第二十四天|回溯算法的理论基础、77. 组合 回溯算法的理论基础77. 组合 回溯算法的理论基础 这里我觉得《代码随想录》和y总的课都比较好了 《代码随想录》 &#xff1a; https://programmercarl.com/0077.%E7%BB%84%E5%90%88%E4%BC%98%E5%8C%96.html#%E5…

成人高考和自考到底应该选哪个呢?

在成人学历提升的各项方式之中 成人高考与自学考试经常会被人拿来对比 但它们之间的差别在哪里 又分别去适合什么类型的考生 成考自考报名一般8月底开始&#xff0c;要准备考试的考生需要提前做好准备了哦 成考自考报名都需要上传证件照&#xff0c;而且都很严格 大家可使用小程…

react 页签(自行封装)

思路&#xff1a;封装一个页签组件&#xff0c;包裹页面组件&#xff0c;页面渲染之后把数据缓存到全局状态实现页面缓存。 浏览本博客之前先看一下我的博客实现的功能是否满足需求&#xff0c;实现功能&#xff1a; - 页面缓存 - 关闭当前页 - 鼠标右键>关闭当前 - 鼠标右…

启发式教学是什么

学生们在上课时看似认真听讲&#xff0c;但是在下课后却一片茫然&#xff0c;不知道你讲了什么内容&#xff1f;这是因为你可能使用了传统的教学方法&#xff0c;而不是启发式教学。 启发式教学是指老师在教育教学中&#xff0c;采用引导、启示、激发等手段&#xff0c;调动学…

主板电路学习; 华硕ASUS K43SD笔记本安装win7X64(ventoy)

记录 老爷机 白色 华硕 K43SD 笔记本 安装 win7X64 1. MBR样式常规安装win7X64Sp1 (华硕 K43SD 安装 win7X64 ) 老爷机 白色 华硕 K43SD 笔记本 安装 win7X64 &#xff08;常规安装&#xff09; 设置&#xff1a; 禁用UEFI 启用AHCI ventoy制作MBR&#xff08;非UEFI&#…

安全防御-基础认知

目录 安全风险能见度不足&#xff1a; 常见的网络安全术语 &#xff1a; 常见安全风险 网络的基本攻击模式&#xff1a; 病毒分类&#xff1a; 病毒的特征&#xff1a; 常见病毒&#xff1a; 信息安全的五要素&#xff1a; 信息安全的五要素案例 网络空间&#xff1a…

Anything本地知识库问答系统:基于检索增强生成式应用(RAG)两阶段检索、支持海量数据、跨语种问答

QAnything本地知识库问答系统&#xff1a;基于检索增强生成式应用&#xff08;RAG&#xff09;两阶段检索、支持海量数据、跨语种问答 QAnything (Question and Answer based on Anything) 是致力于支持任意格式文件或数据库的本地知识库问答系统&#xff0c;可断网安装使用。…

Vue diff原理

✨ 专栏介绍 在当今Web开发领域中&#xff0c;构建交互性强、可复用且易于维护的用户界面是至关重要的。而Vue.js作为一款现代化且流行的JavaScript框架&#xff0c;正是为了满足这些需求而诞生。它采用了MVVM架构模式&#xff0c;并通过数据驱动和组件化的方式&#xff0c;使…