[pytorch] 2. tensorboard

tensorboard简介

TensorBoard 是一组用于数据可视化的工具。它包含在流行的开源机器学习库 Tensorflow 中.但是也可以独立安装,服务Pytorch等其他的框架
可以常常用来观察训练过程中每一阶段如何输出的

  • 安装
    pip install tensorboard
    
  • 启动
    tensorboard --logdir=<directory_name>
    
    会默认在6006端口打开,也可以自行制定窗口,如:
    tensorboard --logdir=logs --port=6007
    

用法

  1. 所在类:
    from torch.utils.tensorboard import SummaryWriter
    
    介绍:
    class SummaryWriter:
        """Writes entries directly to event files in the log_dir to be
        consumed by TensorBoard.
    
        The `SummaryWriter` class provides a high-level API to create an event file
        in a given directory and add summaries and events to it. The class updates the
        file contents asynchronously. This allows a training program to call methods
        to add data to the file directly from the training loop, without slowing down
        training.
        """
    
  2. 创建对象
    writer = SummaryWriter('logs') # 说明写入哪个文件夹
    
  3. 常用方法
    writer.add_image()   # 图像方式
    writer.add_scalar()  # 坐标方式
    
    writer.close()  # 使用完之后需要close
    

add_scalar()

    def add_scalar(self,tag,scalar_value,global_step=None,walltime=None,new_style=False,double_precision=False,):
    """Add scalar data to summary.
        添加标量数据到summary中

        Args:
            tag (str): Data identifier 图表标题
            scalar_value (float or string/blobname): Value to save 数值(y轴)
            global_step (int): Global step value to record 训练到多少步(x轴)
            walltime (float): Optional override default walltime (time.time())
              with seconds after epoch of event
            new_style (boolean): Whether to use new style (tensor field) or old
              style (simple_value field). New style could lead to faster data loading.
        Examples::

            from torch.utils.tensorboard import SummaryWriter
            writer = SummaryWriter()
            x = range(100)
            for i in x:
                writer.add_scalar('y=2x', i * 2, i)
            writer.close()

        Expected result:

        .. image:: _static/img/tensorboard/add_scalar.png
           :scale: 50 %

        """

注意:向writer中写入新事件的同时她也会保留上一个事件,这就会导致一些拟合出现问题
解决:删除之前的log文件,重新生成

add_image()


    def add_image(self, tag, img_tensor, global_step=None, walltime=None, dataformats="CHW"):
        """Add image data to summary.

        Note that this requires the ``pillow`` package.

        Args:
            tag (str): Data identifier
            img_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Image data 注意数据的类型
            global_step (int): Global step value to record
            后面不用管
            walltime (float): Optional override default walltime (time.time())
              seconds after epoch of event
            dataformats (str): Image data format specification of the form
              CHW, HWC, HW, WH, etc.
        Shape:
            img_tensor: Default is :math:`(3, H, W)`. You can use ``torchvision.utils.make_grid()`` to
            convert a batch of tensor into 3xHxW format or call ``add_images`` and let us do the job.
            Tensor with :math:`(1, H, W)`, :math:`(H, W)`, :math:`(H, W, 3)` is also suitable as long as
            corresponding ``dataformats`` argument is passed, e.g. ``CHW``, ``HWC``, ``HW``.
            """

实践

如在tensorboard中展示图片:

from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image

writer = SummaryWriter('logs')
image_path = './dataset2/train/ants_image/0013035.jpg'
img_PIL = Image.open(image_path)
img_array = np.array(img_PIL)
print(type(img_array))
print(img_array.shape)

writer.add_image("test",img_array,1,dataformats='HWC') # 展示读取的图片


for i in range(100):
    writer.add_scalar('y=2x', 3*i, i)     # 绘图

writer.close()


  • writer.add_image中的参数

    def add_image(
            self, tag, img_tensor, global_step=None, walltime=None, dataformats="CHW"
        ):
    

    名称、图形向量(ndarray类型),第几步(是滑动翻页那种的,这里相当于设定是第几页,每次向后设定时不会清除原来的数据)

当前代码效果如图:
在这里插入图片描述
修改图片后:

from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image

writer = SummaryWriter('logs')
image_path = './dataset2/train/ants_image/5650366_e22b7e1065.jpg'
img_PIL = Image.open(image_path)
img_array = np.array(img_PIL)
print(type(img_array))
print(img_array.shape)

# 这里更新,说明为第二步
writer.add_image("test",img_array,2,dataformats='HWC')


for i in range(100):
    writer.add_scalar('y=2x', 3*i, i)

writer.close()

拖拉就会发现有两张图
在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/339181.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

自定义注解与拦截器实现不规范sql拦截(自定义注解填充插件篇)

在自定义注解与拦截器实现不规范sql拦截&#xff08;拦截器实现篇&#xff09;中提到过&#xff0c;写了一个idea插件来辅助对Mapper接口中的方法添加自定义注解&#xff0c;这边记录一下插件的实现。 需求简介 在上一篇中&#xff0c;定义了一个自定义注解对需要经过where判…

理解PCIE设备透传

PCIE设备透传解决的是使虚拟机直接访问PCIE设备的技术&#xff0c;通常情况下&#xff0c;为了使虚拟机能够访问Hypervisor上的资源&#xff0c;QEMU&#xff0c;KVMTOOL等虚拟机工具提供了"trap and emulate"&#xff0c; Virtio半虚拟化等机制实现。但是这些实现都…

[学习笔记]刘知远团队大模型技术与交叉应用L4-Prompt-learning Delta-learning

Prompt-Learning and Delta-Tunning 背景和概览 但是从T5开始&#xff0c;大模型越来越大了。 微调很难了。 模型的趋势 Model Scaling&#xff1a;模型越来越大 Difficult Tuning&#xff1a;微调越来越难 Prompt-Learning 基本组成与流程介绍 预训练和fine-tuning有一…

数学建模学习笔记||层次分析法

评价类问题 解决评价类问题首先需要想到一下三个问题 我们评价的目标是什么我们为了达到这个目标有哪几种可行方案评价的准则或者说指标是什么 对于以上三个问题&#xff0c;我们可以根据题目中的背景材料&#xff0c;常识以及网上收集到的参考资料进行结合&#xff0c;从而筛…

反欺诈与异常点检测

1. 反欺诈检检测 1.1 反欺诈检测的难点 反诈骗实际是个多分类问题&#xff0c;每种不同的诈骗都当做一种单独的类型。除了欺诈手段多样且持续变化&#xff0c;欺诈检测一般还面临以下问题&#xff1a; 1. 大部分情况下数据是没有标签的&#xff0c;各种成熟的监督学习没有用武…

反序列化字符串逃逸(下篇)

这里承接上篇文章反序列化字符串逃逸&#xff08;上篇&#xff09;-CSDN博客带大家学习反序列化字符串逃逸减少&#xff0c;没有看过的可以先去看看&#xff0c;不会吃亏。 例题&#xff1a; <?php highlight_file(__FILE__); error_reporting(0); function filter($name…

vectorCast基于分类树设计测试用例

根据代码的条件,以图表的形式为大家展示出各个变量组合的等价类划分。性别分为2类,年龄分为3类,工作年数分为3类。 那么它们最全面的组合结果就是2*3*3=18 也就是说它们最多有18种组合情况的测试用例 2.选中该函数,点击右键 3.自动生成一个map的基于分类树的测试用例 4.此…

commit 历史版本记录修正

commit 历史版本记录修正 当 Bug 发生的时候&#xff0c;我们会需要去追踪特定 bug 的历史记录&#xff0c;以查出该 bug 真正发生的原因&#xff0c;这个时候就是版本控制带来最大价值的时候。 因此&#xff0c;要怎样维持一个好的版本记录是非常重要的&#xff0c;下面是一…

机器学习--Matplotlib

机器学习–Matplotlib Matplotlib 是专门用于开发2D图表(包括3D图表)以渐进、交互式方式实现数据可视化 简单的Matplotlib画图 — 以折线图为例 matplotlib.pyplot模块 matplotlib.pytplot包含了一系列类似于matlab的画图函数。 import matplotlib.pyplot as plt图形绘制流…

7.【CPP】String类

一.汉字的编码 我们知道计算机存储英文字母&#xff0c;标点&#xff0c;数字用的是ascall码&#xff0c;128种用一个字节表示绰绰有余。而汉字远远不止128种&#xff0c;因此汉字需要两个字节表示。 1.gbk编码中汉字占两个字节。 2.utf-8中&#xff0c;一个汉字占三个字节。…

Java - 深入四大限流算法:原理、实现与应用

文章目录 Pre概述简单计数器原理实现测试优缺点 滑动窗口算法原理实现测试优缺点 漏桶算法原理实现测试优缺点 令牌桶算法原理实现测试优缺点 小结 Pre 深入理解分布式技术 - 限流 并发编程-25 高并发处理手段之消息队列思路 应用拆分思路 应用限流思路 SpringBoot - 优雅…

(上) C语言中的语句分类及分支语句:if语句、switch语句介绍

目录 前言 一、语句的分类 1. 空语句 2. 表达式语句 3. 函数调用语句 4. 复合语句 5. 控制语句 二、分支语句 1. if语句 (1) if的使用 (2) else的使用 (3) 分支中包含多条语句 (4) 嵌套if (5) 悬空else问题 2. switch语句 (1) if语句和switch语句的对比 (2) s…

摇臂MG995舵机模块实战教程

简介 舵机也叫伺服电机&#xff0c;最早用于船舶上实现其转向功能&#xff0c;由于可以通过程序连续控制其转角&#xff0c;因而被广泛应用智能小车以实现转向以及机器人各类关节运动中。舵机&#xff08;英文叫Servo&#xff09;&#xff1a;它由直流电机、减速齿轮组、传感器…

计算机网络——面试问题

1 从输⼊ URL 到⻚⾯展示到底发⽣了什么&#xff1f; 1. 先检查浏览器缓存⾥是否有缓存该资源&#xff0c;如果有直接返回&#xff1b;如果没有进⼊下⼀ 步⽹络请求。 2. ⽹络请求前&#xff0c;进⾏ DNS 解析 &#xff0c;以获取请求域名的 IP地址 。 3. 浏览器与服务器…

Sqoop与Kafka的集成:实时数据导入

将Sqoop与Kafka集成是实现实时数据导入和流处理的关键步骤之一。Sqoop用于将数据从关系型数据库导入到Hadoop生态系统中&#xff0c;而Kafka则用于数据流的传输和处理。本文将深入探讨如何使用Sqoop与Kafka集成&#xff0c;提供详细的步骤、示例代码和最佳实践&#xff0c;以确…

Git与GitHub零基础教学

大家好&#xff0c;我是星恒&#xff0c;这个帖子给大家分享的是git和github的全套教程&#xff0c;包含github初始&#xff0c;git常用命令以及基本使用&#xff0c;git的ssh链接github&#xff0c;github使用token登录&#xff0c;github和idea的配合&#xff0c;一些平时常用…

适合初学者的 机器学习 资料合集(可快速下载)

AI时代已经来临&#xff0c;机器学习成为了当今的热潮。但是&#xff0c;很多人在面对机器学习时却不知道如何开始学习。 今天&#xff0c;我为大家推荐几个适合初学者的机器学习开源项目&#xff0c;帮助大家更好地了解和掌握机器学习的知识。这些项目都是开源的&#xff0c;…

EtherNet/IP开发:C++开发CIP源代码

① 介绍一下CIP CIP是一种考虑到自动化行业而设计的通用协议。然而&#xff0c;由于其开放性&#xff0c;它可以并且已经应用于更多的领域。CIP网络库包含若干卷&#xff1a; 第1卷介绍了适用于所有网络自适应的CIP的常见方面。本卷包含通用对象库和设备配置文件库&#xff0…

信息安全的脆弱性及常见安全攻击

目录 信息安全概述信息安全现状及挑战传统安全防护逐步失效 安全风险能见度不足看不清资产看不见新型威胁看不见内网潜藏风险 常见的网络安全术语信息安全的脆弱性及常见安全攻击网络环境的开放性协议栈的脆弱性及常见攻击常见安全风险 协议栈自身的脆弱性网络的基本攻击模式 链…

Dubbo的几个序列化方式

欢迎订阅专栏&#xff0c;会分享Dubbo里面相关的技术实现 这篇文章就不详细的介绍每种序列化方式的实现细节&#xff0c;大家可以自行去问度娘&#xff0c;我也会找一些资料。需要注意的是&#xff0c;这个先后顺序不表示性能优越 ObjectInput、ObjectOutput 这两是Dubbo序列…