团灭 LeetCode 股票买卖问题

这几道题目是有共性的,我们只需要抽出来力扣第 188 题「188. 买卖股票的最佳时机 IV - 力扣(LeetCode)」进行研究,因为这道题是最泛化的形式,其他的问题都是这个形式的简化,看下题目:

在这里插入图片描述
第一题是只进行一次交易,相当于 k = 1;第二题是不限交易次数,相当于 k = +infinity(正无穷);第三题是只进行 2 次交易,相当于 k = 2;剩下两道也是不限次数,但是加了交易「冷冻期」和「手续费」的额外条件,其实就是第二题的变种,都很容易处理。

下面言归正传,开始解题。

穷举框架

首先,还是一样的思路:如何穷举?

动态规划算法本质上就是穷举「状态」,然后在「选择」中选择最优解。

那么对于这道题,我们具体到每一天,看看总共有几种可能的「状态」,再找出每个「状态」对应的「选择」。我们要穷举所有「状态」,穷举的目的是根据对应的「选择」更新状态。听起来抽象,你只要记住「状态」和「选择」两个词就行,下面实操一下就很容易明白了。

for 状态1 in 状态1的所有取值:
    for 状态2 in 状态2的所有取值:
        for ...
            dp[状态1][状态2][...] = 择优(选择1,选择2...)

比如说这个问题,每天都有三种「选择」:买入、卖出、无操作,我们用 buy, sell, rest 表示这三种选择。

但问题是,并不是每天都可以任意选择这三种选择的,因为 sell 必须在 buy 之后,buy 必须在 sell 之后。那么 rest 操作还应该分两种状态,一种是 buy 之后的 rest(持有了股票),一种是 sell 之后的 rest(没有持有股票)。而且别忘了,我们还有交易次数 k 的限制,就是说你 buy 还只能在 k > 0 的前提下操作。

注:

注意我在本文会频繁使用「交易」这个词,我们把一次买入和一次卖出定义为一次「交易」

这个问题的「状态」有三个,第一个是天数,第二个是允许交易的最大次数,第三个是当前的持有状态(即之前说的 rest 的状态,我们不妨用 1 表示持有,0 表示没有持有)。然后我们用一个三维数组就可以装下这几种状态的全部组合:

dp[i][k][0 or 1]
0 <= i <= n - 1, 1 <= k <= K
n 为天数,大 K 为交易数的上限,0 和 1 代表是否持有股票。
此问题共 n × K × 2 种状态,全部穷举就能搞定。

for 0 <= i < n:
    for 1 <= k <= K:
        for s in {0, 1}:
            dp[i][k][s] = max(buy, sell, rest)

而且我们可以用自然语言描述出每一个状态的含义,比如说 dp[3][2][1] 的含义就是:今天是第三天,我现在手上持有着股票,至今最多进行 2 次交易。再比如 dp[2][3][0] 的含义:今天是第二天,我现在手上没有持有股票,至今最多进行 3 次交易。很容易理解,对吧?

我们想求的最终答案是 dp[n - 1][K][0],即最后一天,最多允许 K 次交易,最多获得多少利润。

你可能问为什么不是 dp[n - 1][K][1]?因为 dp[n - 1][K][1] 代表到最后一天手上还持有股票,dp[n - 1][K][0] 表示最后一天手上的股票已经卖出去了,很显然后者得到的利润一定大于前者。

记住如何解释「状态」,一旦你觉得哪里不好理解,把它翻译成自然语言就容易理解了。

状态转移框架

现在,我们完成了「状态」的穷举,我们开始思考每种「状态」有哪些「选择」,应该如何更新「状态」。

只看「持有状态」,可以画个状态转移图:

在这里插入图片描述
通过这个图可以很清楚地看到,每种状态(0 和 1)是如何转移而来的。根据这个图,我们来写一下状态转移方程:

dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
              max( 今天选择 rest,        今天选择 sell       )

解释:今天我没有持有股票,有两种可能,我从这两种可能中求最大利润:

1、我昨天就没有持有,且截至昨天最大交易次数限制为 k;然后我今天选择 rest,所以我今天还是没有持有,最大交易次数限制依然为 k

2、我昨天持有股票,且截至昨天最大交易次数限制为 k;但是今天我 sell 了,所以我今天没有持有股票了,最大交易次数限制依然为 k

dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
              max( 今天选择 rest,         今天选择 buy         )

解释:今天我持有着股票,最大交易次数限制为 k,那么对于昨天来说,有两种可能,我从这两种可能中求最大利润:

1、我昨天就持有着股票,且截至昨天最大交易次数限制为 k;然后今天选择 rest,所以我今天还持有着股票,最大交易次数限制依然为 k

2、我昨天本没有持有,且截至昨天最大交易次数限制为 k - 1;但今天我选择 buy,所以今天我就持有股票了,最大交易次数限制为 k

这里着重提醒一下,时刻牢记「状态」的定义,状态 k 的定义并不是「已进行的交易次数」,而是「最大交易次数的上限限制」。如果确定今天进行一次交易,且要保证截至今天最大交易次数上限为 k,那么昨天的最大交易次数上限必须是 k - 1。举个具体的例子,比方说要求你的银行卡里今天至少有 100 块钱,且你确定你今天可以赚 10 块钱,那么你就要保证昨天的银行卡要至少剩下 90 块钱。

这个解释应该很清楚了,如果 buy,就要从利润中减去 prices[i],如果 sell,就要给利润增加 prices[i]。今天的最大利润就是这两种可能选择中较大的那个。

注意 k 的限制,在选择 buy 的时候相当于开启了一次交易,那么对于昨天来说,交易次数的上限 k 应该减小 1。

现在,我们已经完成了动态规划中最困难的一步:状态转移方程。如果之前的内容你都可以理解,那么你已经可以秒杀所有问题了,只要套这个框架就行了。不过还差最后一点点,就是定义 base case,即最简单的情况。

dp[-1][...][0] = 0
解释:因为 i 是从 0 开始的,所以 i = -1 意味着还没有开始,这时候的利润当然是 0。

dp[-1][...][1] = -infinity
解释:还没开始的时候,是不可能持有股票的。
因为我们的算法要求一个最大值,所以初始值设为一个最小值,方便取最大值。

dp[...][0][0] = 0
解释:因为 k 是从 1 开始的,所以 k = 0 意味着根本不允许交易,这时候利润当然是 0。

dp[...][0][1] = -infinity
解释:不允许交易的情况下,是不可能持有股票的。
因为我们的算法要求一个最大值,所以初始值设为一个最小值,方便取最大值。

把上面的状态转移方程总结一下:

base case:
dp[-1][...][0] = dp[...][0][0] = 0
dp[-1][...][1] = dp[...][0][1] = -infinity

状态转移方程:
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])

秒杀题目

121. 买卖股票的最佳时机

第一题,先说力扣第 121 题「121. 买卖股票的最佳时机 - 力扣(LeetCode)」,相当于 k = 1 的情况

在这里插入图片描述
直接套状态转移方程,根据 base case,可以做一些化简:

dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i])
dp[i][1][1] = max(dp[i-1][1][1], dp[i-1][0][0] - prices[i]) 
            = max(dp[i-1][1][1], -prices[i])
解释:k = 0 的 base case,所以 dp[i-1][0][0] = 0。

现在发现 k 都是 1,不会改变,即 k 对状态转移已经没有影响了。
可以进行进一步化简去掉所有 k:
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], -prices[i])
int n = prices.length;
int[][] dp = new int[n][2];
for (int i = 0; i < n; i++) {
    dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
    dp[i][1] = Math.max(dp[i-1][1], -prices[i]);
}
return dp[n - 1][0];

显然 i = 0i - 1 是不合法的索引,这是因为我们没有对 i 的 base case 进行处理,可以这样给一个特化处理:

if (i - 1 == -1) {
    dp[i][0] = 0;
    // 根据状态转移方程可得:
    //   dp[i][0] 
    // = max(dp[-1][0], dp[-1][1] + prices[i])
    // = max(0, -infinity + prices[i]) = 0

    dp[i][1] = -prices[i];
    // 根据状态转移方程可得:
    //   dp[i][1] 
    // = max(dp[-1][1], dp[-1][0] - prices[i])
    // = max(-infinity, 0 - prices[i]) 
    // = -prices[i]
    continue;
}

第一题就解决了,但是这样处理 base case 很麻烦,而且注意一下状态转移方程,新状态只和相邻的一个状态有关,不需要用整个 dp 数组,只需要一个变量储存相邻的那个状态就足够了,这样可以把空间复杂度降到 O(1):

// 原始版本
int maxProfit_k_1(int[] prices) {
    int n = prices.length;
    int[][] dp = new int[n][2];
    for (int i = 0; i < n; i++) {
        if (i - 1 == -1) {
            // base case
            dp[i][0] = 0;
            dp[i][1] = -prices[i];
            continue;
        }
        dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
        dp[i][1] = Math.max(dp[i-1][1], -prices[i]);
    }
    return dp[n - 1][0];
}

// 空间复杂度优化版本
int maxProfit_k_1(int[] prices) {
    int n = prices.length;
    // base case: dp[-1][0] = 0, dp[-1][1] = -infinity
    int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
    for (int i = 0; i < n; i++) {
        // dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
        dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
        // dp[i][1] = max(dp[i-1][1], -prices[i])
        dp_i_1 = Math.max(dp_i_1, -prices[i]);
    }
    return dp_i_0;
}

122. 买卖股票的最佳时机 II

第二题,看一下力扣第 122 题「122. 买卖股票的最佳时机 II - 力扣(LeetCode)」,也就是 k 为正无穷的情况

在这里插入图片描述
题目还专门强调可以在同一天出售,但我觉得这个条件纯属多余,如果当天买当天卖,那利润当然就是 0,这不是和没有进行交易是一样的吗?这道题的特点在于没有给出交易总数 k 的限制,也就相当于 k 为正无穷。

如果 k 为正无穷,那么就可以认为 kk - 1 是一样的。可以这样改写框架:

dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
            = max(dp[i-1][k][1], dp[i-1][k][0] - prices[i])

我们发现数组中的 k 已经不会改变了,也就是说不需要记录 k 这个状态了:
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])
// 原始版本
int maxProfit_k_inf(int[] prices) {
    int n = prices.length;
    int[][] dp = new int[n][2];
    for (int i = 0; i < n; i++) {
        if (i - 1 == -1) {
            // base case
            dp[i][0] = 0;
            dp[i][1] = -prices[i];
            continue;
        }
        dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
        dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] - prices[i]);
    }
    return dp[n - 1][0];
}

// 空间复杂度优化版本
int maxProfit_k_inf(int[] prices) {
    int n = prices.length;
    int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
    for (int i = 0; i < n; i++) {
        int temp = dp_i_0;
        dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
        dp_i_1 = Math.max(dp_i_1, temp - prices[i]);
    }
    return dp_i_0;
}

123. 买卖股票的最佳时机 III

第三题,看力扣第 123 题「123. 买卖股票的最佳时机 III - 力扣(LeetCode)」,也就是 k = 2 的情况
在这里插入图片描述
k = 2 和前面题目的情况稍微不同,因为上面的情况都和 k 的关系不太大:要么 k 是正无穷,状态转移和 k 没关系了;要么 k = 1,跟 k = 0 这个 base case 挨得近,最后也没有存在感。

这道题 k = 2 和后面要讲的 k 是任意正整数的情况中,对 k 的处理就凸显出来了,我们直接写代码,边写边分析原因。

原始的状态转移方程,没有可化简的地方
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])

按照之前的代码,我们可能想当然这样写代码(错误的):

int k = 2;
int[][][] dp = new int[n][k + 1][2];
for (int i = 0; i < n; i++) {
    if (i - 1 == -1) {
        // 处理 base case
        dp[i][k][0] = 0;
        dp[i][k][1] = -prices[i];
        continue;
    }
    dp[i][k][0] = Math.max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);
    dp[i][k][1] = Math.max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);
}
return dp[n - 1][k][0];

为什么错误?我这不是照着状态转移方程写的吗?

还记得前面总结的「穷举框架」吗?就是说我们必须穷举所有状态。其实我们之前的解法,都在穷举所有状态,只是之前的题目中 k 都被化简掉了。

比如说第一题,k = 1 时的代码框架:

int n = prices.length;
int[][] dp = new int[n][2];
for (int i = 0; i < n; i++) {
    dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
    dp[i][1] = Math.max(dp[i-1][1], -prices[i]);
}
return dp[n - 1][0];

但当 k = 2 时,由于没有消掉 k 的影响,所以必须要对 k 进行穷举:

// 原始版本
int maxProfit_k_2(int[] prices) {
    int max_k = 2, n = prices.length;
    int[][][] dp = new int[n][max_k + 1][2];
    for (int i = 0; i < n; i++) {
        for (int k = max_k; k >= 1; k--) {
            if (i - 1 == -1) {
                // 处理 base case
                dp[i][k][0] = 0;
                dp[i][k][1] = -prices[i];
                continue;
            }
            dp[i][k][0] = Math.max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);
            dp[i][k][1] = Math.max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);
        }
    }
    // 穷举了 n × max_k × 2 个状态,正确。
    return dp[n - 1][max_k][0];
}

这里肯定会有读者疑惑,k 的 base case 是 0,按理说应该从 k = 1, k++ 这样穷举状态 k 才对?而且如果你真的这样从小到大遍历 k,提交发现也是可以的

为什么我从大到小遍历 k 也可以正确提交呢?因为你注意看,dp[i][k][..] 不会依赖 dp[i][k - 1][..],而是依赖 dp[i - 1][k - 1][..],而 dp[i - 1][..][..],都是已经计算出来的,所以不管你是 k = max_k, k--,还是 k = 1, k++,都是可以得出正确答案的。

那为什么我使用 k = max_k, k-- 的方式呢?因为这样符合语义:

你买股票,初始的「状态」是什么?应该是从第 0 天开始,而且还没有进行过买卖,所以最大交易次数限制 k 应该是 max_k;而随着「状态」的推移,你会进行交易,那么交易次数上限 k 应该不断减少,这样一想,k = max_k, k-- 的方式是比较合乎实际场景的。

当然,这里 k 取值范围比较小,所以也可以不用 for 循环,直接把 k = 1 和 2 的情况全部列举出来也可以:

// 状态转移方程:
// dp[i][2][0] = max(dp[i-1][2][0], dp[i-1][2][1] + prices[i])
// dp[i][2][1] = max(dp[i-1][2][1], dp[i-1][1][0] - prices[i])
// dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i])
// dp[i][1][1] = max(dp[i-1][1][1], -prices[i])

// 空间复杂度优化版本
int maxProfit_k_2(int[] prices) {
    // base case
    int dp_i10 = 0, dp_i11 = Integer.MIN_VALUE;
    int dp_i20 = 0, dp_i21 = Integer.MIN_VALUE;
    for (int price : prices) {
        dp_i20 = Math.max(dp_i20, dp_i21 + price);
        dp_i21 = Math.max(dp_i21, dp_i10 - price);
        dp_i10 = Math.max(dp_i10, dp_i11 + price);
        dp_i11 = Math.max(dp_i11, -price);
    }
    return dp_i20;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/338657.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

RHCE上课笔记(前半部分)

第一部分 网络服务 第一章 例行性工作 1.单一执行的例行性工作 单一执行的例行性工作&#xff08;就像某一个时间点 的闹钟&#xff09;&#xff1a;仅处理执行一次 1.1 at命令&#xff1a;定时任务信息 [rhellocalhost ~]$ rpm -qa |grep -w at at-spi2-core-2.40.3-1.el9.x…

一条sql是如何运行的

在我们平时使用sql的时候&#xff0c;基本是基于黑盒的使用方式&#xff0c;在客户端输入一条sql语句&#xff0c;然后回显想要的数据&#xff0c;对于mysql server端内部如何运行的以及与存储引擎如何交互的不得而知。 通过下面一幅图&#xff0c;大致描述客户端和服务端交互…

重定位(一)段的概念引入

1.2440结构图 对于2440来说&#xff0c;cpu可以直接发指令给SRAM、网卡、SDRAM、NOR FLASH&#xff0c;但无法直接控制NAND FLASH,必须由NAND FLASH控制器来操作NAND FLASH&#xff0c;但为什么我们的裸机程序烧入NAND FLASH还可以运行呢&#xff1f; 这就引入了重定位机制&…

matlab appdesigner系列-常用12-日期选择器

日期选择器&#xff0c;目的就是显示时间&#xff0c;时间格式目前常用的 正序2024/1/19 也有倒序 19/1/2024 或者写成年-月-日格式的&#xff0c; 此示例&#xff0c;为当用户要更改日期时&#xff0c;弹出对话框提示&#xff1a;把日期从XXX改到XXX&#xff1f;确认日期…

热血江湖服务端服务器架设教程

热血江湖服务端服务器架设教程 大家好&#xff0c;我是艾西今天简单的说下热血江湖架设需要哪些东西然后怎么操作&#xff0c;不管你是自己玩还是对外开放&#xff0c;这对于有兴趣的小伙伴总的都是一件好事。技多不压身就是这么个道理&#xff0c;当你需要用上时还希望能记起…

【二叉树练习2】

文章目录 判断是否是完全二叉树找出p和q的最近的公共祖先非递归实现前序遍历非递归实现中序遍历非递归实现后序遍历 判断是否是完全二叉树 boolean isCompleteTree(TreeNode root){if (root null){return true;}//创建队列Queue<TreeNode> queue new LinkedList<>…

Midjourney在线绘画及提示词精选库

网址:https://chat.xutongbao.top/ 一碗面粉&#xff1a; Self-Rising Flour in a 50s colourful bowl. professional photograph --ar 720:1170 --v 6 烟花古建筑&#xff1a; At night, with the snow-covered scenery of the Beijing Forbidden City as the backdrop, brill…

linux内核源码编译2.6失败

centos7环境 iso选择 https://mirrors.tuna.tsinghua.edu.cn/centos/7/isos/x86_64/CentOS-7-x86_64-DVD-2009.iso 自带qemu&#xff0c;未实测是否可用 选择编译版本2.6 下载地址 遇到的编译错误解决 yum list | grep curses yum install ncurses-devel.x86_64 -y yum i…

算法专题[递归-搜索-回溯-2-DFS]

算法专题[递归-搜索-回溯-2-DFS] 一.计算布尔二叉树的值&#xff1a;1.思路一&#xff1a;2.GIF题目解析 二.求根节点到叶子节点的数字之和1.思路一&#xff1a;2.GIF题目解析 三.二叉树剪枝1.思路一&#xff1a;2.GIF题目解析 四.验证二叉搜索树1.思路一&#xff1a;2.GIF题目…

触摸屏监控双速电动机-硬件设计1

主电路设计 主电路如图所示。三相总电源从前门配电箱的-X1-1接线端子排引出&#xff0c;给混料泵电动机供三相电&#xff0c;给PLC供单相电。混料泵电动机用KM3主触点接通低速&#xff0c;用KM4的主触点和辅助触点接通高速。注意&#xff0c;高低速切换时&#xff0c;双速电动…

18G大小的R包 | 将你需要的R包全部下载

写在前面 在上周&#xff0c;我们在社群讨论。安装R包是个玄学”有时候真的很奇怪&#xff0c;在自己的电脑上就是无法安装&#xff0c;但是在其他电脑都可以正常安装…&#xff0c;不是感到很无语&#xff1f;&#xff1f;&#xff1f;&#xff1f;没有办法&#xff0c;类似的…

数据结构之栈和队列

数据结构之栈和队列 1、栈1.1、栈的定义及基本运算1.2、栈的存储结构 2、队列2.1、队列的定义及基本运算2.2、队列的存储结构2.3、队列的应用 数据结构是程序设计的重要基础&#xff0c;它所讨论的内容和技术对从事软件项目的开发有重要作用。学习数据结构要达到的目标是学会从…

【计算机网络】【Python】【练习题】【新加坡南洋理工大学】【Computer Control Network】

一、题目描述 该题目描述一个网络中数据包交换&#xff08;Packet Switching&#xff09;的例子。题目如下&#xff1a; 二、问题解答&#xff08;使用Python&#xff09; Q1&#xff1a;如何求出0.0004这个值&#xff1f; &#xff08;1&#xff09;、公式推导过程&#xf…

4.servera修改主机名,配置网络,以及在cmd中远程登录servera的操作

1.先关闭这两节省资源 2.对于新主机修改主机名&#xff0c;配置网络 一、配置网络 1.推荐图形化界面nmtui 修改完成后测试 在redhat ping一下 在redhat远程登录severa 2、使用nmcli来修改网络配置 2.1、配置要求&#xff1a;主机名&#xff1a; node1.domain250.exam…

<信息安全>《1 国内主要企业网络安全公司概览(一)》

1 深信服科技股份有限公司 信息内容LOGO成立日期2000年12月25日成立。总部深圳市南山区学苑大道1001号南山智园A1栋是否上市深信服[300454]A股市值265亿主要产品企业级网络安全云计算IT基础设施数据通信物联网员工规模9000人分支机构全球50多个荣誉国家级高新技术企业、中国软…

JVM系列-3.类的生命周期

&#x1f44f;作者简介&#xff1a;大家好&#xff0c;我是爱吃芝士的土豆倪&#xff0c;24届校招生Java选手&#xff0c;很高兴认识大家&#x1f4d5;系列专栏&#xff1a;Spring原理、JUC原理、Kafka原理、分布式技术原理、数据库技术、JVM原理&#x1f525;如果感觉博主的文…

Kotlin协程的JVM实现源码分析(下)

协程 根据 是否保存切换 调用栈 &#xff0c;分为&#xff1a; 有栈协程&#xff08;stackful coroutine&#xff09;无栈协程&#xff08;stackless coroutine&#xff09; 在代码上的区别是&#xff1a;是否可在普通函数里调用&#xff0c;并暂停其执行。 Kotlin协程&…

NG+WAF实现应用安全访问

一、基本概念 什么是waf&#xff1f; Web应用防火墙&#xff08;waf&#xff09;是通过执行一系列针对HTTP/HTTPS的安全策略来专门为Web应用提供保护的一款产品&#xff0c;WAF是一种工作在应用层的、通过特定的安全策略来专门为Web应用提供安全防护的产品。 什么是ngx_lua_…

2024年开年的荣誉--来自国产数据库

上周在北京参加了阿里云的开发者大会&#xff0c;我因为去年做了一点小贡献。非常荣幸的获得了阿里云的MVP的这个殊荣。&#xff08;期间也认识了一些大神级的人物&#xff09;还有就是一些网上认识的打卡们线下见面。 这个也是我一直追求的荣誉。 几乎在同时P&#xff08;Ping…