【学习笔记】遥感影像分类相关精度指标

文章目录

  • 0.混淆矩阵
  • 1. 精度名词解释
  • 2. Kappa系数
  • 3.举个栗子
  • 参考资料

0.混淆矩阵

混淆矩阵是分类精度的评定指标。是一个用于表示分为某一类别的像元个数与地面检验为该类别数的比较阵列。

对检核分类精度的样区内所有的像元,统计其分类图中的类别与实际类别之间的混淆程度。

混淆矩阵中,对角线上元素为被正确分类的样本数目,非对角线上的元素为错分的样本数。

1. 精度名词解释

名词解释
生产者(制图) 精度地表真实为A类,分类图像的像元归为A的概率
用户精度假定分类器将像元归到A类时,地表真实类别是A的概率
总体分类精度等于被正确分类的像元总和除以总像元数,地表真实图像或地表真实感兴趣区限定了像元的真实分类。被正确分类的像元沿着混淆矩阵的对角线分布,它显示出被分类到正确地表真实分类中的像元数。像元总数等于所有地表真实分类中的像元总和。
Kappa系数所有地表真实分类中的像元总数(N) 乘以混淆矩阵对角线(Xkk) 的和,再减去某一类中地表真实像元总数与该类中被分类像元总数之积对所有类别求和的结果,再除以总像元数的平方差减去某一类中地表真实像元总数与该类中被分类像元总数之积对所有类别求和的结果所得到的。

在这里插入图片描述
用户精度:是指正确分到X类的像元总数(对角线值)与分类器将整个影像的像元分为X类的像元总数(混淆矩阵中X类行的总和)比率。用来表示分类结果中,各类别的可信度,整张分类成果的可靠性。

用户精度 = A / G

生产者精度:指分类器将整个影像的像元正确分为A类的像元数(对角线值)与A类真实参考总数(混淆矩阵中A类列的总和)的比率。用于比较分类方法的好坏。

生产者精度= A / D

总体分类精度:指被正确分类的类别像元数与总的类别个数的比值。

总体分类精度= A + I + J / N

2. Kappa系数

kappa系数是一种衡量分类精度的指标。它是通过把所有地表真实分类中的像元总数(N)乘以混淆矩阵对角线(Xii)的和,再减去某一类地表真实像元总数与该类中被分类像元总数之积对所有类别求和的结果,再除以总像元数的平方减去某一类地表真实像元总数与该类中被分类像元总数之积对所有类别求和的结果所得到的。

Kappa系数= [ N(A+I+J)-(DG+PM+QO) ] / [ N2 -(DG+PM+QO) ]*

Kappa系数是用于测定两幅图像之间的吻合度或精度的指标;

Kappa系数和总体精度的区别在于:总体精度只考虑了位于对角线上的像素数量,Kappa系数既考虑了对角线上被正确分类的像素,又考虑了不在对角线上的各种漏分和错分错误。

Kappa系数分类质量
<0.00很差
0.00~0.20
0.20~0.40一般
0.40~0.60
0.60~0.80很好
0.80~1.00极好

3.举个栗子

在这里插入图片描述
对这个例子的通俗描述(有可能不太准确)为:我们在实际地物上共取了 650 个像素点:有137个像素点属于类别1、有130个像素点属于类别2、有134个像素点属于类别3、有123个像素点属于类别4、有126个像素点属于类别5;但是呢,实验过程中分的太均匀了,给每一类都分到了130个像素点。

ok,分类完成了,怎样衡量这次分类实验的精度呢?前辈么就提出了四个量:生产者(制图) 精度、用户精度、总体分类精度、Kappa系数。看它们的字面意思不太好理解,那么我们可以这样记:生产精度可以衡量漏分误差,用户精度可以衡量多分误差(简称:生漏用多,越用越多)


参考资料

[1] 遥感图像分类领域的混淆矩阵

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/338102.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【服务器】搭建一台属于自己的服务器

​🌈个人主页:Sarapines Programmer🔥 系列专栏:【服务器】搭建网站⏰诗赋清音:云生高巅梦远游, 星光点缀碧海愁。 山川深邃情难晤, 剑气凌云志自修。 目录 1. 购买服务器和域名 1.1 购买服务器 1.1.1 阿里云服务器 1.1.2 香草云服务器 1.2 购买域名 2. 安装宝塔…

JAVA和C++ SECS/GEM300开发和概念

编译SECS示例程序 1. 示例程序使用默认路径&#xff1a; D:\SECS 稳定版\SECS Debug\ 2. 该操作分为俩步 ① 将C#的Secs库编译成设备相同Net版本。 如.net3.5、4.0、4.5等等 ② 编译金南瓜SECS demo程序 编译C#的SecsEquip.dll 1. 找到SecsEquip项目 项目文件 使用Visua…

python24.1.21面向对象编程

面向对象编程&#xff1a;创建对象&#xff0c;定义对象的方法和属性 封装&#xff1a;隐藏内部实现细节&#xff0c;只通过外部接口访问使用 继承&#xff1a;允许创建有层次的类&#xff08;子类&#xff0c;父类&#xff09; 多态&#xff1a;同样接口&#xff0c;对象具体…

力扣343. 整数拆分(动态规划)

Problem: 343. 整数拆分 文章目录 题目描述思路解题方法复杂度Code 题目描述 思路 该题目可以抽象成动态规划中的爬楼梯模型&#xff0c;将整数的拆分类比为上台阶&#xff1a; 1.每个阶段可以从整数中划分出1、2、…k的一个整数 2.int dp[n 1] dp[i]表示为i的整数划分的最大…

【Python从入门到进阶】47、Scrapy Shell的了解与应用

接上篇《46、58同城Scrapy项目案例介绍》 上一篇我们学习了58同城的Scrapy项目案例&#xff0c;并结合实际再次了项目结构以及代码逻辑的用法。本篇我们来学习Scrapy的一个终端命令行工具Scrapy Shell&#xff0c;并了解它是如何帮助我们更好的调试爬虫程序的。 一、Scrapy Sh…

一个很牛的库:csckit!

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、什么是Python csvkit&#xff1f;二、csvkit 的主要特点三、安装Python csvkit四 基本用法读取CSV文件五使用Python库进行高级操作总结 前言 大家好&#…

Oracle篇—参数文件在11gRAC或12cRAC的启动位置介绍

☘️博主介绍☘️&#xff1a; ✨又是一天没白过&#xff0c;我是奈斯&#xff0c;DBA一名✨ ✌✌️擅长Oracle、MySQL、SQLserver、Linux&#xff0c;也在积极的扩展IT方向的其他知识面✌✌️ ❣️❣️❣️大佬们都喜欢静静的看文章&#xff0c;并且也会默默的点赞收藏加关注❣…

flutter项目怎么判断是不是web平台?Unsupported operation: Platform._operatingSystem

如果你使用Platform 这个工具来判断的时候&#xff0c;很有可能会报错&#xff1a; Exception caught by widgets library The following UnsupportedError was thrown building MyApp(dirty): Unsupported operation: Platform._operatingSystem The relevant error-causin…

分布式锁的产生以及使用

日常开发中&#xff0c;针对一些需要锁定资源的操作&#xff0c;例如商城的订单超卖问题、订单重复提交问题等。 都是为了解决在资源有限的情况限制客户端的访问&#xff0c;对应的是限流。 单节点锁问题 目前针对这种锁资源的情况采取的往往是互斥锁&#xff0c;例如 java 里…

Node+Express编写接口---前端

前端页面 vue_node_admin: 第一个以node后端,vue为前端的后台管理项目https://gitee.com/ah-ah-bao/vue_node_admin.git

1.1 数据库概述

1.1 数据库概述 1.1.1 数据库基本概念 - 数据&#xff08;Data&#xff09; - 数据库&#xff08;DataBase&#xff0c;DB&#xff09; - 数据库管理系统&#xff08;DataBase Management System&#xff0c;DBMS&#xff09; - …

【C++】List模拟实现过程中值得注意的点

&#x1f440;樊梓慕&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C》《Linux》《算法》 &#x1f31d;每一个不曾起舞的日子&#xff0c;都是对生命的辜负 目录 前言 1.List迭代器 2.适…

AI对比:ChatGPT与文心一言的异同与未来

文章目录 &#x1f4d1;前言一、ChatGPT和文心一言概述1.1 ChatGPT1.2 文心一言 二、ChatGPT和文心一言比较2.1 训练数据与知识储备2.2 语义理解与生成能力2.2 应用场景与商业化探索 三、未来展望3.1 模型规模与参数数量不断增加3.2 多模态交互成为主流3.3 知识图谱与大模型的结…

Vue2移动端项目使用$router.go(-1)不生效问题记录

目录 1、this.$router.go(-1) 改成 this.$router.back() 2、存储 from.path&#xff0c;使用 this.$router.push 3、hash模式中使用h5新增的onhashchange事件做hack处理 4、this.$router.go(-1) 之前添加一个 replace 方法 问题背景 &#xff1a; 在 Vue2 的一个移动端开发…

JS-WebAPIs- Window对象(五)

• BOM(浏览器对象模型) BOM(Browser Object Model ) 是浏览器对象模型 window对象是一个全局对象&#xff0c;也可以说是JavaScript中的顶级对象像document、alert()、console.log()这些都是window的属性&#xff0c;基本BOM的属性和方法都是window的。所有通过var定义在全局…

【web 编程技术】基于 B/S 架构的电商平台(java web)

基于 B/S 架构的电商平台&#xff08;java web&#xff09; 课程设计实验目的课程设计实验环境课程设计功能概述课程设计需求分析三层架构图功能列表系统用例图系统活动图-用户端需求分析 课程设计详细设计实现过程数据库BaseServlet 的实现商品显示模块-分页显示所有商品、查看…

《WebKit 技术内幕》之五(1): HTML解释器和DOM 模型

第五章 HTML 解释器和 DOM 模型 1.DOM 模型 1.1 DOM标准 DOM &#xff08;Document Object Model&#xff09;的全称是文档对象模型&#xff0c;它可以以一种独立于平台和语言的方式访问和修改一个文档的内容和结构。这里的文档可以是 HTML 文档、XML 文档或者 XHTML 文档。D…

MySQL 索引(下)

&#x1f389;欢迎您来到我的MySQL基础复习专栏 ☆* o(≧▽≦)o *☆哈喽~我是小小恶斯法克&#x1f379; ✨博客主页&#xff1a;小小恶斯法克的博客 &#x1f388;该系列文章专栏&#xff1a;重拾MySQL-进阶篇 &#x1f379;文章作者技术和水平很有限&#xff0c;如果文中出现…

【STM32调试】寄存器调试不良问题记录持续版

STM32寄存器调试不良问题记录 低功耗管理NVIC&#xff08;内嵌的中断向量控制器&#xff09;EXTI&#xff08;外部中断/事件&#xff09; 记录一些stm32调试过程中&#xff1a;不易被理解、存在使用误区、不清不楚、是坑、使用常识等方面的一些记录。本记录只包含stm32的内核以…

UE5 C++学习笔记 常用宏的再次理解

1.随意创建一个类&#xff0c;他都有UCLASS()。GENERATED_BODY()这样的默认的宏。 UCLASS() 告知虚幻引擎生成类的反射数据。类必须派生自UObject. &#xff08;告诉引擎我是从远古大帝UObject中&#xff0c;继承而来&#xff0c;我们是一家人&#xff0c;只是我进化了其他功能…