相关系数(皮尔逊相关系数和斯皮尔曼相关系数)

 本文借鉴了数学建模清风老师的课件与思路,可以点击查看链接查看清风老师视频讲解:5.1 对数据进行描述性统计以及皮尔逊相关系数的计算方法_哔哩哔哩_bilibili

注:直接先看 ( 三、两个相关系数系数的比较 ) 部分!!!

目录

​编辑

一、数据的描述性统计分析 

二、皮尔逊相关系数

2.1注意事项

2.2 SPSS绘制散点图

2.3 MATLAB计算皮尔逊相关系数

2.3.1 MATLAB计算皮尔逊相关系数

2.3.2 相关系数矩阵的美化

2.4 对皮尔逊相关系数进行假设检验(p值判断法)

2.4.1 假设检验

2.4.2 MATLAB和SPSS计算p值

①MATLAB计算p值

②spss计算p值

2.5 正态分布检验

2.5.1 JB检验(大样本n > 30)

2.5.2 Shapiro-wilk检验(小样本 3 ≤ n ≤ 50)

2.5.3 QQ图

二、斯皮尔曼相关系数

2.1 斯皮尔曼相关系数

2.2 斯皮尔曼相关系数的计算

2.3 两种相关系数结果的对比

2.4 对斯皮尔曼相关系数进行假设检验(p值判断法)

①matlab计算P值

②SPSS计算p值

三、两个相关系数系数的比较


一、数据的描述性统计分析 

clear;clc
%% 统计描述
MIN = min(Test);  % 每一列的最小值
MAX = max(Test);   % 每一列的最大值
MEAN = mean(Test);  % 每一列的均值
MEDIAN = median(Test);  %每一列的中位数
SKEWNESS = skewness(Test); %每一列的偏度
KURTOSIS = kurtosis(Test);  %每一列的峰度
STD = std(Test);  % 每一列的标准差
RESULT = [MIN;MAX;MEAN;MEDIAN;SKEWNESS;KURTOSIS;STD]  %将这些统计量放到一个矩阵中表示

二、皮尔逊相关系数

2.1注意事项

简单来说,就是在进行皮尔逊相关系数之前需要绘制这两个变量的散点图查看是否为线性关系,若是就用皮尔逊,若不是就用斯皮尔曼。

上图为一般情况下相关系数的解释,实际可根据题目背景解释即可,只要言之有理即可。

2.2 SPSS绘制散点图

以这个数据为例:

 这里使用Spss比较方便: 导入数据 - 图形 - 旧对话框 - 散点图/点图 - 矩阵散点图 - 将指标拖入矩阵变量(M)- 确定

 这里用高版本的绘制(我用的27)感觉好看一点,如下:

注意:在得到变量之间为线性关系的时候才能继续下面的计算步骤。

2.3 MATLAB计算皮尔逊相关系数

2.3.1 MATLAB计算皮尔逊相关系数

R = corrcoef(Test)   % correlation coefficient

得到的R即为相关系数矩阵,其中1为自己和自己的相关性,自然为1,0.0665为第一列和第二列的相关系数,-0.2177为第一列和第三列的相关系数,0.0954为第一列和第三列的相关系数,其他的以此类推。

2.3.2 相关系数矩阵的美化

关于这里的美化,具体操作看该系列第一个视频38分钟左右处。

2.4 对皮尔逊相关系数进行假设检验(p值判断法)

2.4.1 假设检验

 

简单来说,就是当算出来的p值<0.01,<.05,<0.10的情况下,即在90%,95%,99%的置信水平上,拒绝原假设r = 0,因此r是显著的不为0的。(实际做的时候,就把假设和备择假设写上,然后算出p值,接着就把这段话写下来)

2.4.2 MATLAB和SPSS计算p值

①MATLAB计算p值

%% 计算各列之间的相关系数以及p值
[R,P] = corrcoef(Test)
% 在EXCEL表格中给数据右上角标上显著性符号吧
P < 0.01  % 标记3颗星的位置
(P < 0.05) .* (P > 0.01)  % 标记2颗星的位置
(P < 0.1) .* (P > 0.05) % % 标记1颗星的位置

 但是MATLAB计算出来的p值放在Excle里,不好标记*,所以可以采用Spss。

②spss计算p值

SPSS里 分析 - 相关 - 双变量- 把变量托到右边 - 确定 。结果如下图,和matlab的结果一样:

2.5 正态分布检验

2.5.1 JB检验(大样本n > 30)

% 用循环检验所有列的数据
n_c = size(Test,2);  % number of column 数据的列数
H = zeros(1,6);  % 初始化节省时间和消耗  
P = zeros(1,6);
for i = 1:n_c
    [h,p] = jbtest(Test(:,i),0.05);
    H(i)=h;
    P(i)=p;
end
disp(H)
disp(P)

代码里的6是因为这里的数据变量有6个,0.05代表现在是95%的置信水平,实际中可根据需要自行调整。输出的H为1就是在95%的置信水平下拒绝原假设,即不服从正态分布,0则是不拒绝原假设,即服从正态分布;P则是p值。

2.5.2 Shapiro-wilk检验(小样本 3 ≤ n ≤ 50)

结果如下:

只需要看最后一列即可,都小于0.01,说明在99%的置信水平下,拒绝原假设,即不服从正态分布。 

2.5.3 QQ图

要求样本量非常大,不太推荐用QQ图,用前面两个检验即可。

MATLAB画QQ图的命令:

% Q-Q图
qqplot(Test(:,1))

二、斯皮尔曼相关系数

2.1 斯皮尔曼相关系数

第一种定义:

第二种定义:

2.2 斯皮尔曼相关系数的计算

第一种为只有两个变量时使用,第二种为有多个变量时使用。

2.3 两种相关系数结果的对比

2.4 对斯皮尔曼相关系数进行假设检验(p值判断法)

小样本情况下:

大样本情况下:

①matlab计算P值

②SPSS计算p值

SPSS里 分析 - 相关 - 双变量- 把变量托到右边 - 勾选上斯皮尔曼 - 确定 。

结果如下,和MATLAB结果一样的:

三、两个相关系数系数的比较

总结下来就是:

用相关系数前,先对数据进行描述性统计,然后画散点图看数据是否是线性的,接着对数据做正态性检验,满足正态性检验后再计算皮尔逊相关系数并看是不是显著的。(进行假设检验的前提是通过正态分布检验)

如果没有通过检验则用斯皮尔曼相关系数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/336992.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

VC++中使用OpenCV进行颜色检测

VC中使用OpenCV进行颜色检测 在VC中使用OpenCV进行颜色检测非常简单&#xff0c;首选读取一张彩色图像&#xff0c;并调用函数cvtColor(img, imgHSV, COLOR_BGR2HSV);函数将原图img转换成HSV图像imgHSV&#xff0c;再设置好HSV三个分量的上限和下限值&#xff0c;调用inRange函…

自动化测试:5分钟了解Selenium以及如何提升自动化测试的效果

在快节奏的技术世界里&#xff0c;自动化测试已经成为确保 Web 应用程序质量和性能的重要手段。自动化测试不仅加快了测试过程&#xff0c;还提高了测试的重复性和准确性。Selenium&#xff0c;作为领先的自动化测试工具之一&#xff0c;为测试人员提供了强大的功能来模拟用户在…

C++-类和对象(3)

1. 再谈构造函数 1.1 构造函数体赋值 我们在创建一个对象时&#xff0c;编译器会调用该对象的构造函数对该对象的成员进行初始化。 class Date { public:Date(int year, int month, int day){_year year;_month month;_day day;} private:int _year;int _month;int _day…

Linux系统安装Samba服务器

在实际开发中&#xff0c;我们经常会有跨系统之间文件传递的需求&#xff0c;Samba 便是能够在 Windows 和 Linux 之间传递文件的服务&#xff0c;功能也是非常强大和好用&#xff0c;本篇文章将介绍如何在 Linux 系统上安装 Samba 服务&#xff0c;以 CentOS7 系统为例。 一、…

SpringBoot:详解Bean生命周期和作用域

&#x1f3e1;浩泽学编程&#xff1a;个人主页 &#x1f525; 推荐专栏&#xff1a;《深入浅出SpringBoot》《java项目分享》 《RabbitMQ》《Spring》《SpringMVC》 &#x1f6f8;学无止境&#xff0c;不骄不躁&#xff0c;知行合一 文章目录 前言一、生命周期二…

大数据平台的硬件规划、网络调优、架构设计、节点规划

1.大数据平台硬件选型 要对Hadoop大数据平台进行硬件选型,首先需要了解Hadoop的运行架构以及每个角色的功能。在一个典型的Hadoop架构中,通常有5个角色,分别是NameNode、Standby NameNode、ResourceManager、NodeManager、DataNode以及外围机。 其中 NameNode 负责协调集群…

手把手教你购买阿里云服务器以及Ubuntu环境下宝塔搭建网站

阿里云服务器Ubuntu通过宝塔搭建网站详细教程 前言一、阿里云服务器的购买二、进入控制面板2.1 修改密码2.2 开放端口号 三、 测试服务器是否可以连接四、 安装nginx搭建网站(选做)五、安装宝塔5.1 登录宝塔官网5.2 卸载预装的mysql和nginx5.3 安装宝塔5.4 访问宝塔控制台5.5 修…

CSS:backdrop-filter实现毛玻璃的效果

实现效果 实现代码 /* 关键属性 */ background-color: rgba(255, 255, 255, 0.4); backdrop-filter: blur(10px); -webkit-backdrop-filter: blur(10px);完整代码 <style>/* 遮罩层 */.mo-mask {position: fixed;top: 0;bottom: 0;left: 0;right: 0;width: 100%;height…

Hadoop3完全分布式搭建

一、第一台的操作搭建 修改主机名 使用hostnamectl set-hostname 修改当前主机名 关闭防火墙和SELlinux 1&#xff0c;使用 systemctl stop firewalld systemctl disable firewalld 关闭防火墙 2&#xff0c;使用 vim /etc/selinux/config 修改为 SELINUXdisabled 使用N…

考研C语言刷题基础篇之分支循环结构基础(二)

目录 第一题分数求和 第二题&#xff1a;求10 个整数中最大值 第三题&#xff1a;在屏幕上输出9*9乘法口诀表 第四题&#xff1a;写一个代码&#xff1a;打印100~200之间的素数 第五题&#xff1a;求斐波那契数的第N个数 斐波那契数的概念&#xff1a;前两个数相加等于第三…

爬虫进阶之selenium模拟浏览器

爬虫进阶之selenium模拟浏览器 简介环境配置1、建议先安装conda2、创建虚拟环境并安装对应的包3、下载对应的谷歌驱动以及与驱动对应的浏览器 代码setting.py配置scrapy脚本参考中间件middlewares.py 附录&#xff1a;selenium教程 简介 Selenium是一个用于自动化浏览器操作的…

继电器开关电路图大全

继电器是一种电控制器件&#xff0c;是当输入量&#xff08;激励量&#xff09;的变化达到规定要求时&#xff0c;在电气输出电路中使被控量发生预定的阶跃变化的一种电器。它具有控制系统&#xff08;又称输入回路&#xff09;和被控制系统&#xff08;又称输出回路&#xff0…

USB-C接口给显示器带来怎样的变化?

随着科技的不断发展&#xff0c;Type-C接口已经成为现代电子设备中常见的接口标准。它不仅可以提供高速的数据传输&#xff0c;还可以实现快速充电和视频传输等功能。因此&#xff0c;使用Type-C接口的显示器方案也受到了广泛的关注。本文将介绍Type-C接口显示器的优势、应用场…

基于C++11的数据库连接池【C++/数据库/多线程/MySQL】

一、概述 概述&#xff1a;数据库连接池可提前把多个数据库连接建立起来&#xff0c;然后把它放到一个池子里边&#xff0c;就是放到一个容器里边进行维护。这样的话就能够避免数据库连接的频繁的创建和销毁&#xff0c;从而提高程序的效率。线程池其实也是同样的思路&#xf…

二叉树基础oj题目

二叉树基础oj题目及思路总结 前文中&#xff0c;介绍了二叉树的基本概念及基础操作&#xff0c;进一步对于二叉树的递归遍历及子问题的处理思想有了一定的了解。本文将带来几道二叉树经典的oj题目。 目录 二叉树基础oj题目 对称二叉树平衡二叉树二叉树的层序遍历 二叉树基…

基于一次应用卡死问题所做的前端性能评估与优化尝试

问题背景 在上个月&#xff0c;由于客户反馈客户端卡死现象但我们远程却难以复现此现象&#xff0c;于是我们组织了一次现场上门故障排查&#xff0c;并希望基于此次观察与优化&#xff0c;为客户端开发提供一些整体的优化升级。当然&#xff0c;在尝试过程中&#xff0c;也发…

使用docker配置semantic slam

一.Docker环境配置 1.拉取Docker镜像 sudo docker pull ubuntu:16.04拉取的为ununtu16版本镜像&#xff0c;环境十分干净&#xff0c;可以通过以下命令查看容器列表 sudo docker images 如果想删除多余的docker image&#xff0c;可以使用指令 sudo docker rmi -f <id&g…

黑马程序员-瑞吉外卖-day4

实现账号的启动禁止 EmployeeController PutMappingpublic R<String> update(RequestBody Employee employee){employeeService.updateById(employee);return R.success("员工信息修改成功");} 出错 解决 common目录下 引入JacksonObjectMapper package com…

Redis 面试题 | 02.精选Redis高频面试题

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

开源项目_大模型应用_Chat2DB

1 基本信息 项目地址&#xff1a;https://github.com/chat2db/Chat2DBStar&#xff1a;10.7K 2 功能 Chat2DB 是一个智能且多功能的 SQL 客户端和报表工具&#xff0c;适用于各种数据库。 对于那些平时会用到数据库&#xff0c;但又不是数据库专家的程序员来说&#xff0c;…