【JavaEE】_基于UDP实现网络通信

目录

1. 服务器

1.1 实现逻辑

1.2 代码

1.3 部分代码解释

2. 客户端

2.1 实现逻辑

2.2 代码

2.3 客户端部分代码解释

3. 程序运行结果

4. 服务器客户端交互逻辑


此篇内容为实现UDP版本的回显服务器echo server;

普通服务器:收到请求,根据请求计算响应,返回响应;

回显服务器:忽略计算,直接将收到的请求作为响应返回;

如需实现其他功能,修改响应计算方法process内容即可);

具体实现代码如下:

1. 服务器

1.1 实现逻辑

对于网络通信的服务器需要进行的工作为:

1. 读取请求并解析;

2. 根据请求计算响应;

3. 把响应写回客户端;

4. 打印交互详细信息;

1.2 代码

package TestDemo1;

import java.io.IOException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.SocketException;

public class UDPEchoServer {
    // 创建一个DatagramSocket对象,作为后续操作网卡的基础
     private DatagramSocket socket = null;
     public UDPEchoServer(int port) throws SocketException{
         // 显式指定服务器端口号
         socket = new DatagramSocket(port);
     }
     public void start() throws IOException {
         // 服务器启动方法
         System.out.println("服务器启动");
         // 为保证服务器随时向客户端提供服务
         while(true){
             // 1. 读取请求并解析
             DatagramPacket requestPacket = new DatagramPacket(new byte[4096], 4096);
             // DatagramPacket对象用于承载从网卡读到的数据,收到数据时需要创建一个内存空间保存这个数据,
             // DatagramPacket内部不能自行分配内存空间,需要程序员手动创建
             socket.receive(requestPacket);
             // 完成receive之后,数据以二进制形式存储在DatagramPacket中
             // 需要将二进制数据转成字符串
             String request = new String(requestPacket.getData(),0, requestPacket.getLength());
             // 取0~requestPacket.getLength()区间内的字节构成一个String对象;

             //2. 根据请求计算响应
             String response = process(request);

             //3. 把响应写回客户端
             DatagramPacket responsePacket = new DatagramPacket(
                     response.getBytes(),response.getBytes().length,requestPacket.getSocketAddress());
             socket.send(responsePacket);

             //4. 打印交互详细信息
             System.out.printf("[%s:%d] req=%s, resp=%s\n",
                     requestPacket.getAddress().toString(),requestPacket.getPort(),
                     request,response);
         }
     }
     public String process(String request){
         return request;
     }

    public static void main(String[] args) throws IOException {
        UDPEchoServer server = new UDPEchoServer(9090);
        // 可以在1024~65535(临时端口)中任意选取端口号
        server.start();
    }
}

1.3 部分代码解释

1. 为方便计算请求,将请求的DatagramPacket对象构造成字符串时只需获取DatagramPacket对象中实际有效的部分数据,requestPacket.getLength()获取到的就是收到数据的真实长度而非4096这个最大长度:

2. 已经了解过UDP本身是无连接的,故而对于每一次通信过程,在构造数据报时都需要指定数据报要发给谁;

(1)对于构造的responsePacket对象有3个参数:

DatagramPacket responsePacket = new DatagramPacket(                   
response.getBytes(),
response.getBytes().length,
requestPacket.getSocketAddress());

response.length()获取到的是响应对象字符串的字符个数,

response.getBytes().length获取到的是响应对象字符串的字节个数;

requestPacket.getSocketAddress()获取到的是请求发送方(即客户端)的IP与端口号

(2)注意response.getBytes.length(字节个数)与response.getlength()(字符个数)的区别:

如果response字符串都是英文字符则二者相等,如果包含中文则二者不同;

在进行网络传输时,必然是需要通过字节为单位进行通信的。

3. while(true)会使程序处于快速循环的状态,每循环一次就处理一次请求响应,

当客户端发出请求时,recerive就能顺利读取请求,客户端没有发出请求时,receive就会阻塞

如果客户端发出的请求过多,可以使用多线程冲动调动计算机硬件资源,也可以再多开机器,但多开机器又会涉及到分布式问题;

4. 使用格式化输出Packet的IP与端口号:

5. 前文已经提及socket也是一个文件,但在上文代码中并未进行close操作,却没有造成文件资源泄漏的原因是:

socket是文件描述符表中的一个表项,每次打开一个文件就会占用一个位置,文件描述符在pcb上,是跟随进程的。在上文代码中创建的socket对象在整个程序运行过程中都需要使用,不可以提前关闭,当socket不需要使用时,即代表程序结束了,进程结束了,文件描述符表也销毁了,伴随着销毁都被系统自动回收了。故而不会造成文件资源泄露问题

只有代码中频繁打开文件但不关闭,在一个进程的运行过程中,不断积累打开的文件,逐渐消耗掉文件描述符表中的内容,最后消耗殆尽,才会造成泄露。

对于生命周期很短的进程,无需考虑泄露,在客户端方一般来说影响不大。

2. 客户端

2.1 实现逻辑

对于网络通信的客户端,需要进行的工作是:

1. 从控制台读取数据作为客户端发出的请求;

2. 将请求字符串request构造成请求requestPacket对象,发送给服务器;

3. 尝试读取服务器返回的响应;

4. 将响应responsePacket对象构造成响应response字符串,显示出来;

2.2 代码

package TestDemo1;

import java.io.IOException;
import java.net.*;
import java.util.Scanner;

public class UDPEchoClient {
    private DatagramSocket socket = null;
    private String serverIp = "";
    private int serverPort = 0;
    public UDPEchoClient(String ip, int port) throws SocketException {
        // 客户端的socket对象需令系统自动分配
        socket = new DatagramSocket();
        // UDP本身不持有对端信息,需要在应用程序中记录对端信息(IP与端口)
        serverIp = ip;
        serverPort = port;
    }
    public void start() throws IOException {
        // 客户端启动方法
        System.out.println("客户端启动");
        Scanner scanner = new Scanner(System.in);
        while(true){
            // 1. 从控制台读取数据作为客户端发出的请求
            System.out.println("->");
            String request = scanner.next();

            // 2. 将请求字符串request构造成请求requestPacket对象,发送给服务器
            DatagramPacket requestPacket = new DatagramPacket(
                    request.getBytes(),request.getBytes().length,
                    InetAddress.getByName(serverIp), serverPort);
            socket.send(requestPacket);

            // 3. 尝试读取服务器返回的响应
            DatagramPacket responsePacket = new DatagramPacket(new byte[4096], 4096);
            socket.receive(responsePacket);

            // 4. 将响应responsePacket对象转换为响应字符串response,显示出来
            String response = new String(responsePacket.getData(), 0, responsePacket.getLength());
            System.out.println(response);
        }
    }
    public static void main(String[] args) throws IOException {
        UDPEchoClient client = new UDPEchoClient("127.0.0.1", 9090);
        client.start();
    }
}

2.3 客户端部分代码解释

1.DatagramPacket的三个构造方法

第一种:只指定字节数组缓冲区,用于服务器接收请求与客户端接收响应时使用

第二种:指定字节数组缓冲区与InetAddress对象(同时包含IP与端口),用于服务器向客户端发回响应时使用

第三种:指定字节数组缓冲区,同时指定IP与端口号

2. 客户端对服务器发出请求的过程:

对于服务器端口必须是确定的:程序员可以手动分配空闲端口给当前服务器使用即可,

代码为:

socket = new DatagramSocket(port);

客户端一般都采取系统分配的方式:也可以指定端口,但不推荐。一方面,因为指定的端口可能被其他进程占用,如果被占用就会产生端口号冲突,运行就会抛出异常,提示绑定端口失败;另一方面,如果客户端出现了端口冲突,让客户手动解决也是不现实的。

代码为:

socket = new Datagramocket();

3. 端口与进程的关系:

端口号用于标识或区分一个进程,因此在同一台主机上,不允许一个端口同时被多个进程使用;

但是一个进程可以绑定多个端口;

socket和端口是一一对应的,进程与socket是一对多的

3. 程序运行结果

首先启动EchoServer,再启动EchoClient,在客户端输入请求字符串后查看运行结果:

客户端与服务器通信成功。

4. 服务器客户端交互逻辑

1. 服务器先启动,启动后进入循环,执行到receive处阻塞;

2. 客户端开始启动后,进入循环执行scanner.next(),在此处阻塞。

    当客户在控制台输入内容后,next返回作为请求,继而构造请求数据并发送给服务器;

3. 客户端发送数据后,

服务器从receive中返回,解析请求构造字符串,执行process操作计算响应,构造响应后执行send发回给客户端;

客户端执行到receive处等待服务器的响应;

4. 客户端获取到从服务器返回的数据后,从receive中返回,继而显示响应内容;

5. 服务器完成一次循环后又执行到receive处,客户端完成依次循环后又执行到scanner.next处,二者均进入阻塞状态;

注意:当服务器程序在普通私有ip计算机上运行时,若不在一个局域网中,无法实现跨主机访问。

如果服务器程序在特殊的计算机:云服务器上,就拥有了公有ip,可以实现跨主机访问。

此部分内容后续详解。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/336500.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

领略指针之妙

𝙉𝙞𝙘𝙚!!👏🏻‧✧̣̥̇‧✦👏🏻‧✧̣̥̇‧✦ 👏🏻‧✧̣̥̇:Solitary-walk ⸝⋆ ━━━┓ - 个性标签 - :来于“云”的“羽球人”。…

【高等数学之极限】

一、引言 我们先思考一下,上面三个表达式,是否可以将极限值直接代入求值,我们在计算之前需要先分析一下,如果将极限值代入,那么表达式将会变成什么形式? 经过上面的分析,我们发现第一个式子可以直接带入&a…

微电网优化MATLAB:遗传算法(Genetic Algorithm,GA)求解微电网优化(提供MATLAB代码)

一、微网系统运行优化模型 微电网优化是指通过对微电网系统中各个组件的运行状态进行监测和调节,以实现微电网系统的高效运行和能源利用的最大化。微电网是由多种能源资源(如太阳能、风能、储能等)和负载(如建筑、工业设备等&…

通用人工智能的能力评估框架-Levels of AGI Operationalizing Progress on the Path to AGI

通用人工智能的能力评估框架-Levels of AGI: Operationalizing Progress on the Path to AGI 译自’Levels of AGI: Operationalizing Progress on the Path to AGI’,有所删节.笔者能力有限,敬请勘误。 摘要 Google DeepMind提出一种针对通用人工智能 …

端口映射的定义、特点、场景、实例、常见问题回答(Port Mapping)

目 录 一、端口映射(Port Mapping) 二、端口映射应用场景(什么时候用到端口映射) (一)、使用端口映射的条件 (二)使用端口映射的具体场景 三、端口映射技术的特点 …

LLM之RAG实战(十七)| 高级RAG:通过使用LlamaIndex重新排序来提高检索效率

基本RAG的检索是静态的,会检索到固定数字(k)个相关文档,而如果查询需要更多的上下文(例如摘要)或更少的上下文,该怎么办? 可以通过在以下两个阶段来实现动态检索: 预检索…

Python对Excel文件中不在指定区间内的数据加以去除的方法

本文介绍基于Python语言,读取Excel表格文件,基于我们给定的规则,对其中的数据加以筛选,将不在指定数据范围内的数据剔除,保留符合我们需要的数据的方法。 首先,我们来明确一下本文的具体需求。现有一个Exc…

Centos 7 单机部署 consul

一、下载安装 参考官网文档 Install | Consul | HashiCorp Developer 进入Centos 执行下面命令 sudo yum install -y yum-utils sudo yum-config-manager --add-repo https://rpm.releases.hashicorp.com/RHEL/hashicorp.repo sudo yum -y install consul 这种方法安装完成…

Javascript简介(全部是基础)

js初识 js是一种解释性语言,不需要编译,直接由浏览器解析执行 组成 ECMAScript是一种开放的,被国际上广为接收的,标准的脚本语言规范,主要描述:语法,变量,数据类型,运算…

什么是DOM?(JavaScript DOM是什么?)

1、DOM简洁 DOM是js中最重要的一部分,没有DOM就不会通过js实现和用户之间的交互。 window是最大的浏览器对象,在它的下面还有很多子对象,我们要学习的DOM就是window对象下面的document对象 DOM(Document Object Model&#xff09…

C++ 学习系列 -- std::function 与 std::bind

一 std::function 与 std::bind 的介绍 1. std::function std::function 是 c 11 的新特性 &#xff0c;包含在头文件<functional>中&#xff0c;为了更方便的调用函数而引入。 std::function 是一个函数包装器&#xff08;function wrapper&#xff09;&#xff0c;…

Cmake(1)——Cmake的基本介绍和原理、Cmake的安装、如何使用Cmake构建项目

Cmake的基本介绍和原理、Cmake的安装、如何使用Cmake构建项目 插播&#xff01;插播&#xff01;插播&#xff01;亲爱的朋友们&#xff0c;我们的Cmake课程上线啦&#xff01;感兴趣的小伙伴可以去下面的链接学习哦~ https://edu.csdn.net/course/detail/39261 1、Cmake的基…

在微信公众号中加入ChatGPT聊天的方法

1 介绍 开源项目 "chatgpt-on-wechat" 支持通过微信公众号进行调用&#xff0c;这意味着用户可以在与公众号的交互中体验 ChatGPT。由于服务是部署在远端服务器上的&#xff0c;因此用户只需拥有一部手机&#xff0c;就可以在任何环境下与 ChatGPT 进行交流。例如&am…

fabric.js 组件 图片上传裁剪并进行自定义区域标记

目录 0. 前言 1. 安装fabric与引入 2. fabric组件的使用 3. 属性相关设置 4. 初始化加载 4. 方法 5. 全代码 0. 前言 利用fabric组件&#xff0c;实现图片上传、图片”裁剪“、自定义的区域标记一系列操作 先放一张效果图吧&#x1f447; 1. 安装fabric与引入 npm i …

Flink(十三)【Flink SQL(上)SqlClient、DDL、查询】

前言 最近在假期实训&#xff0c;但是实在水的不行&#xff0c;三天要学完SSM&#xff0c;实在一言难尽&#xff0c;浪费那时间干什么呢。SSM 之前学了一半&#xff0c;等后面忙完了&#xff0c;再去好好重学一遍&#xff0c;毕竟这玩意真是面试必会的东西。 今天开始学习 Flin…

“GPC爬虫池有用吗?

作为光算科技的独有技术&#xff0c;在深入研究谷歌爬虫推出的一种吸引谷歌爬虫的手段 要知道GPC爬虫池是否有用&#xff0c;就要知道谷歌爬虫这一概念&#xff0c;谷歌作为一个搜索引擎&#xff0c;里面有成百上千亿个网站&#xff0c;对于里面的网站内容&#xff0c;自然不可…

虚拟机安装宝塔的坑

问题&#xff1a; 在虚拟机中centos7和centos8中安装宝塔之后&#xff0c;无法访问面板。 解决&#xff1a; 1.先关闭防火墙&#xff08;如果本机能够ping通相关端口&#xff0c;则不用关闭防火墙&#xff09; 2.最新的宝塔会自动开启ssl协议&#xff0c;需要手动关闭。…

PostgreSQL 是不是大小写敏感

如果你踩过 MySQL 的大坑的话就知道&#xff1a;MySQL 在 Windows 下不区分大小写&#xff0c;但在 Linux 下默认是区分大小写。 如果你稍加不注意就会出现在本机开发的程序运行一切正常&#xff0c;发布到服务器行就出现表名找不到的问题。 这是我们前一个项目遇到的巨大问题…

【力扣4行代码解题】572另一棵树的子树 | C++

总结&#xff1a;本题可以使用递归和迭代法&#xff0c;但平时还是建议两种方法都掌握&#xff0c;感兴趣的同学可以看看原题。 文章目录 1 题目2 知识点3 代码及解释 1 题目 力扣链接 > 572.另一棵树的子树 给你两棵二叉树 root 和 subRoot 。检验 root 中是否包含和 sub…

探索图像检索:从理论到实战的应用

目录 一、引言二、图像检索技术概述图像检索的基本概念图像检索与文本检索的区别特征提取技术相似度计算索引技术 三、图像检索技术代码示例图像特征提取示例相似度计算索引技术 四、图像搜索流程架构数据采集与预处理特征提取相似度计算与排名结果呈现与优化 五、实际应用图像…