Python对Excel文件中不在指定区间内的数据加以去除的方法

本文介绍基于Python语言,读取Excel表格文件,基于我们给定的规则,对其中的数据加以筛选,将不在指定数据范围内的数据剔除,保留符合我们需要的数据的方法。

首先,我们来明确一下本文的具体需求。现有一个Excel表格文件(在本文中我们就以.csv格式的文件为例),如下图所示。

其中,Excel表格文件具有大量的数据,每一列表示某一种属性每一行表示某一个样本;我们需要做的,就是对于其中的部分属性加以数据筛选——例如,我们希望对上图中第一列的数据进行筛选,将其中大于2或小于-1的部分选出来,并将每一个所选出的单元格对应的直接删除;同时,我们还希望对其他的属性同样加以筛选,不同属性筛选的条件也各不相同,但都是需要将不符合条件的单元格所在的整行都删除。最终,我们保留下来的数据,就是符合我们需要的数据,此时我们需要将其保存为一个新的Excel表格文件。

明白了需求,我们即可开始代码的撰写;本文用到的具体代码如下所示。

# -*- coding: utf-8 -*-
"""
Created on Wed Jun  7 15:40:50 2023

@author: fkxxgis
"""

import pandas as pd

original_file = "E:/01_Reflectivity/99_Model_Training/00_Data/02_Extract_Data/23_Train_model_NoH/Train_Model_1_NoH.csv"
result_file = "E:/01_Reflectivity/99_Model_Training/00_Data/02_Extract_Data/23_Train_model_NoH/Train_Model_1_NoH_New.csv"

df = pd.read_csv(original_file)

df = df[(df["inf"] >= -0.2) & (df["inf"] <= 18)]
df = df[(df["NDVI"] >= -1) & (df["NDVI"] <= 1)]
df = df[(df["inf_dif"] >= -0.2) & (df["inf_dif"] <= 18)]
df = df[(df["NDVI_dif"] >= -2) & (df["NDVI_dif"] <= 2)]
df = df[(df["soil"] >= 0)]
df = df[(df["inf_h"] >= -0.2) & (df["inf_h"] <= 18)]
df = df[(df["ndvi_h"] >= -1) & (df["ndvi_h"] <= 1)]
df = df[(df["inf_h_dif"] >= -0.2) & (df["inf_h_dif"] <= 18)]
df = df[(df["ndvi_h_dif"] >= -1) & (df["ndvi_h_dif"] <= 1)]

df.to_csv(result_file, index = False)

下面是对上述代码每个步骤的解释:

  1. 导入必要的库:导入了pandas库,用于数据处理和操作。
  2. 定义文件路径:定义了原始文件路径original_file和结果文件路径result_file
  3. 读取原始数据:使用pd.read_csv()函数读取原始文件数据,并将其存储在DataFrame对象df中。
  4. 数据筛选:对DataFrame对象df进行多个条件的筛选操作,使用了逻辑运算符&和比较运算符进行条件组合。例如,其中的第一行df["inf"] >= -0.2df["inf"] <= 18就表示筛选出"inf"列的值在-0.218之间的数据;第二行df["NDVI"] >= -1df["NDVI"] <= 1则表示筛选出"NDVI"列的值在-11之间的数据,以此类推。
  5. 保存结果数据:使用to_csv()函数将筛选后的DataFrame对象df保存为新的.csv文件,保存路径为result_file,并设置index=False以避免保存索引列。

当然,如果我们需要对多个属性(也就是多个列)的数据加以筛选,除了上述代码中的方法,我们还可以用如下所示的代码,较之前述代码会更方便一些。

result_df = result_df[(result_df["blue"] > 0) & (result_df["blue"] <= 1) &
                              (result_df["green"] > 0) & (result_df["green"] <= 1) &
                              (result_df["red"] > 0) & (result_df["red"] <= 1) &
                              (result_df["inf"] > 0) & (result_df["inf"] <= 1) &
                              (result_df["NDVI"] > -1) & (result_df["NDVI"] < 1) &
                              (result_df["inf_dif"] > -1) & (result_df["inf_dif"] < 1) &
                              (result_df["NDVI_dif"] > -2) & (result_df["NDVI_dif"] < 2) &
                              (result_df["soil"] >= 0) &
                              (result_df["NDVI_dif"] > -2) & (result_df["NDVI_dif"] < 2) &
                              (result_df["inf_h_dif"] > -1) & (result_df["inf_h_dif"] < 1) &
                              (result_df["ndvi_h_dif"] > -1) & (result_df["ndvi_h_dif"] < 1)]

上述代码可以直接对DataFrame对象加以一次性的筛选,不用每筛选一次就保存一次了。

运行本文提及的代码,我们即可在指定的结果文件夹下获得数据筛选后的文件了。

至此,大功告成。

如果你对Python感兴趣,想要学习python,这里给大家分享一份Python全套学习资料,都是我自己学习时整理的,希望可以帮到你,一起加油!

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

1️⃣零基础入门

① 学习路线

对于从来没有接触过Python的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

② 路线对应学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~
在这里插入图片描述

③练习题

每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
在这里插入图片描述

2️⃣国内外Python书籍、文档

① 文档和书籍资料

在这里插入图片描述

3️⃣Python工具包+项目源码合集

①Python工具包

学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
在这里插入图片描述

②Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
在这里插入图片描述

③Python小游戏源码

如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
在这里插入图片描述

4️⃣Python面试题

我们学会了Python之后,有了技能就可以出去找工作啦!下面这些面试题是都来自阿里、腾讯、字节等一线互联网大厂,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

上述所有资料 ⚡️ ,朋友们如果有需要的,可以扫描下方👇👇👇二维码免费领取🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/336490.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Centos 7 单机部署 consul

一、下载安装 参考官网文档 Install | Consul | HashiCorp Developer 进入Centos 执行下面命令 sudo yum install -y yum-utils sudo yum-config-manager --add-repo https://rpm.releases.hashicorp.com/RHEL/hashicorp.repo sudo yum -y install consul 这种方法安装完成…

Javascript简介(全部是基础)

js初识 js是一种解释性语言&#xff0c;不需要编译&#xff0c;直接由浏览器解析执行 组成 ECMAScript是一种开放的&#xff0c;被国际上广为接收的&#xff0c;标准的脚本语言规范&#xff0c;主要描述&#xff1a;语法&#xff0c;变量&#xff0c;数据类型&#xff0c;运算…

什么是DOM?(JavaScript DOM是什么?)

1、DOM简洁 DOM是js中最重要的一部分&#xff0c;没有DOM就不会通过js实现和用户之间的交互。 window是最大的浏览器对象&#xff0c;在它的下面还有很多子对象&#xff0c;我们要学习的DOM就是window对象下面的document对象 DOM&#xff08;Document Object Model&#xff09…

C++ 学习系列 -- std::function 与 std::bind

一 std::function 与 std::bind 的介绍 1. std::function std::function 是 c 11 的新特性 &#xff0c;包含在头文件<functional>中&#xff0c;为了更方便的调用函数而引入。 std::function 是一个函数包装器&#xff08;function wrapper&#xff09;&#xff0c;…

Cmake(1)——Cmake的基本介绍和原理、Cmake的安装、如何使用Cmake构建项目

Cmake的基本介绍和原理、Cmake的安装、如何使用Cmake构建项目 插播&#xff01;插播&#xff01;插播&#xff01;亲爱的朋友们&#xff0c;我们的Cmake课程上线啦&#xff01;感兴趣的小伙伴可以去下面的链接学习哦~ https://edu.csdn.net/course/detail/39261 1、Cmake的基…

在微信公众号中加入ChatGPT聊天的方法

1 介绍 开源项目 "chatgpt-on-wechat" 支持通过微信公众号进行调用&#xff0c;这意味着用户可以在与公众号的交互中体验 ChatGPT。由于服务是部署在远端服务器上的&#xff0c;因此用户只需拥有一部手机&#xff0c;就可以在任何环境下与 ChatGPT 进行交流。例如&am…

fabric.js 组件 图片上传裁剪并进行自定义区域标记

目录 0. 前言 1. 安装fabric与引入 2. fabric组件的使用 3. 属性相关设置 4. 初始化加载 4. 方法 5. 全代码 0. 前言 利用fabric组件&#xff0c;实现图片上传、图片”裁剪“、自定义的区域标记一系列操作 先放一张效果图吧&#x1f447; 1. 安装fabric与引入 npm i …

Flink(十三)【Flink SQL(上)SqlClient、DDL、查询】

前言 最近在假期实训&#xff0c;但是实在水的不行&#xff0c;三天要学完SSM&#xff0c;实在一言难尽&#xff0c;浪费那时间干什么呢。SSM 之前学了一半&#xff0c;等后面忙完了&#xff0c;再去好好重学一遍&#xff0c;毕竟这玩意真是面试必会的东西。 今天开始学习 Flin…

“GPC爬虫池有用吗?

作为光算科技的独有技术&#xff0c;在深入研究谷歌爬虫推出的一种吸引谷歌爬虫的手段 要知道GPC爬虫池是否有用&#xff0c;就要知道谷歌爬虫这一概念&#xff0c;谷歌作为一个搜索引擎&#xff0c;里面有成百上千亿个网站&#xff0c;对于里面的网站内容&#xff0c;自然不可…

虚拟机安装宝塔的坑

问题&#xff1a; 在虚拟机中centos7和centos8中安装宝塔之后&#xff0c;无法访问面板。 解决&#xff1a; 1.先关闭防火墙&#xff08;如果本机能够ping通相关端口&#xff0c;则不用关闭防火墙&#xff09; 2.最新的宝塔会自动开启ssl协议&#xff0c;需要手动关闭。…

PostgreSQL 是不是大小写敏感

如果你踩过 MySQL 的大坑的话就知道&#xff1a;MySQL 在 Windows 下不区分大小写&#xff0c;但在 Linux 下默认是区分大小写。 如果你稍加不注意就会出现在本机开发的程序运行一切正常&#xff0c;发布到服务器行就出现表名找不到的问题。 这是我们前一个项目遇到的巨大问题…

【力扣4行代码解题】572另一棵树的子树 | C++

总结&#xff1a;本题可以使用递归和迭代法&#xff0c;但平时还是建议两种方法都掌握&#xff0c;感兴趣的同学可以看看原题。 文章目录 1 题目2 知识点3 代码及解释 1 题目 力扣链接 > 572.另一棵树的子树 给你两棵二叉树 root 和 subRoot 。检验 root 中是否包含和 sub…

探索图像检索:从理论到实战的应用

目录 一、引言二、图像检索技术概述图像检索的基本概念图像检索与文本检索的区别特征提取技术相似度计算索引技术 三、图像检索技术代码示例图像特征提取示例相似度计算索引技术 四、图像搜索流程架构数据采集与预处理特征提取相似度计算与排名结果呈现与优化 五、实际应用图像…

基于Java+SSM志愿者服务管理系统详细设计和实现【附源码】

基于JavaSSM志愿者服务管理系统详细设计和实现【附源码】 &#x1f345; 作者主页 央顺技术团队 &#x1f345; 欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; &#x1f345; 文末获取源码联系方式 &#x1f4dd; &#x1f345; 查看下方微信号获取联系方式 承接各种定制系…

线上SQL超时场景分析-MySQL超时之间隙锁

前言 之前遇到过一个由MySQL间隙锁引发线上sql执行超时的场景&#xff0c;记录一下。 背景说明 分布式事务消息表&#xff1a;业务上使用消息表的方式&#xff0c;依赖本地事务&#xff0c;实现了一套分布式事务方案 消息表名&#xff1a;mq_messages 数据量&#xff1a;3000多…

[java基础揉碎]基本数据类型转换

介绍 当java程序在进行赋值或者运算时&#xff0c;精度小的类型自动转换为精度大的数据类型&#xff0c; 这个就是自动类型转换。 数据类型按精度&#xff08;容量&#xff09;大小排序为: 自动类型转换注意和细节 1.有多种类型的数据混合运算时&#xff0c;系统首先自动…

【Linux的权限命令详解】

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言 shell命令以及运行原理 Linux权限的概念 Linux权限管理 一、什么是权限&#xff1f; 二、权限的本质 三、Linux中的用户 四、linux中文件的权限 4.1、文件访问…

【成本价特惠】招募证书代理:工信部、PMP、阿里云、华为等认证,机会难得!

扫码和我联系 亲爱的读者朋友们&#xff0c; 今天&#xff0c;我想和大家分享一个难得的机会。我们目前正在积极招募各类证书的代理&#xff0c;包括工信部的证书、PMP&#xff08;项目管理专业人士&#xff09;证书、阿里云证书、华为证书、OCP 证书、CFA 证书等。这些证书在…

C++入门学习(七)整型

整型就是整数类型的数据&#xff08;-1&#xff0c;0&#xff0c;1等等&#xff09; 数据类型占用空间取值范围short(短整型)2字节 (-2^15 ~ 2^15-1) 32768~32767 int(整型)4字节(-2^31 ~ 2^31-1)long(长整形) Windows为4字节, Linux为4字节(32位), 8字节(64位) (-2^31 ~ 2^31…

LiteAD对接FusionCompute

2、FA发放云桌面并与FC对接 &#xff08;1&#xff09;创建虚拟机模板 &#xff08;2&#xff09;创建虚拟机命名规则 &#xff08;3&#xff09;创建虚拟机组 &#xff08;4&#xff09;创建桌面组 &#xff08;5&#xff09;创建域用户和组&#xff08;就相当于在Microsoft …