12- OpenCV:算子(Sobel和Laplance) 和Canny边缘检测 详解

目录

一、Sobel算子

1、卷积应用-图像边缘提取

2、Sobel算子(索贝尔算子)

3、相关的API(代码例子)

二、Laplance算子

1、理论

2、API使用(代码例子)

三、Canny边缘检测

1、Canny算法介绍

2、API使用(代码例子)


一、Sobel算子

1、卷积应用-图像边缘提取

         在这个红点变化最大,变化率很高的,梯度也是最陡。变化率做成一根曲线,所以变化率最大的就在顶点。

(1)边缘是什么 :是像素值发生跃迁的地方,是图像的显著特征之一,在图像特征提取、对象检测、模式识别等方面都有重要的作用。

(2)如何捕捉/提取边缘 – 对图像求它的一阶导数       

                delta =  f(x) – f(x-1), delta越大,说明像素在X方向变化越大,边缘信号越强,

(3)用Sobel算子就好!卷积操作!

2、Sobel算子(索贝尔算子)

(1)是离散微分算子(discrete differentiation operator),用来计算图像灰度的近似梯度;

(2)Soble算子功能集合高斯平滑和微分求导;

(3)又被称为一阶微分算子,求导算子,在水平和垂直两个方向上求导,得到图像X方法与Y方向梯度图像;

(4)求取导数的近似值,kernel=3时不是很准确,OpenCV使用改进版本Scharr函数,算子如下:放大了权重,差异性更加大了,不过也更加准确些。

3、相关的API(代码例子)

(1)cv_Sobel函数原型

cv::Sobel (

InputArray Src // 输入图像

OutputArray dst// 输出图像,大小与输入图像一致

int depth // 输出图像深度.

int dx.  // X方向,几阶导数

int dy // Y方向,几阶导数.

int ksize, SOBEL算子kernel大小,必须是奇数,1、3、5、7,一般是3

double scale  = 1

double delta = 0

int borderType = BORDER_DEFAULT

)

(2)cv::Scharr

cv::Scharr (

InputArray Src // 输入图像

OutputArray dst// 输出图像,大小与输入图像一致

int depth // 输出图像深度.

int dx.  // X方向,几阶导数

int dy // Y方向,几阶导数.

double scale  = 1

double delta = 0

int borderType = BORDER_DEFAULT

)

(3)其他的API

— GaussianBlur( src, dst, Size(3,3), 0, 0, BORDER_DEFAULT );

— cvtColor( src,  gray, COLOR_RGB2GRAY );

— addWeighted( A, 0.5,B, 0.5, 0, AB); convertScaleAbs(A, B)// 计算图像A的像素绝对值,输出到图像B

(4)代码演示

图像处理流程:

-高斯平滑(高斯模糊)GaussianBlur( )

-转灰度

-求梯度X和Y:做Sobel索贝尔计算

-得到振幅图像

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace cv;
int main(int argc, char** argv) {
	Mat src, dst;
	src = imread("test.jpg");
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}

	char INPUT_TITLE[] = "input image";
	char OUTPUT_TITLE[] = "sobel-demo";
	namedWindow(INPUT_TITLE, CV_WINDOW_AUTOSIZE);
	namedWindow(OUTPUT_TITLE, CV_WINDOW_AUTOSIZE);
	imshow(INPUT_TITLE, src);

	Mat gray_src;
	GaussianBlur(src, dst, Size(3, 3), 0, 0);
	cvtColor(dst, gray_src, CV_BGR2GRAY);
	imshow("gray image", gray_src);

	Mat xgrad, ygrad;
	Scharr(gray_src, xgrad, CV_16S, 1, 0);
	Scharr(gray_src, ygrad, CV_16S, 0, 1);

	// Sobel(gray_src, xgrad, CV_16S, 1, 0, 3);
	// Sobel(gray_src, ygrad, CV_16S, 0, 1, 3);

    // 转为绝对值
	convertScaleAbs(xgrad, xgrad);
	convertScaleAbs(ygrad, ygrad);
	imshow("xgrad", xgrad);
	imshow("ygrad", ygrad);

	Mat xygrad = Mat(xgrad.size(), xgrad.type());
	printf("type : %d\n", xgrad.type());
	int width = xgrad.cols;
	int height = ygrad.rows;
	for (int row = 0; row < height; row++) {
		for (int col = 0; col < width; col++) {
			int xg = xgrad.at<uchar>(row, col);
			int yg = ygrad.at<uchar>(row, col);
			int xy = xg + yg;
			xygrad.at<uchar>(row, col) = saturate_cast<uchar>(xy);
		}
	}
	//addWeighted(xgrad, 0.5, ygrad, 0.5, 0, xygrad);
	imshow(OUTPUT_TITLE, xygrad);

	waitKey(0);
	return 0;
}

效果展示:

二、Laplance算子

1、理论

解释:在二阶导数的时候,最大变化处的值为零即边缘是零值。通过二阶 导数计算,依据此理论我们可以计算图像二阶导数,提取边缘。

实际上就是:拉普拉斯算子操作(Laplance operator)-> cv::Laplance

2、API使用(代码例子)

(1)cv::Laplacian原型:

Laplacian(

InputArray src,

OutputArray dst,

int depth, //深度CV_16S

int kisze, // 3

double scale = 1,

double delta =0.0,

int borderType = 4

)

(2)代码演示

图像处理流程:

- 高斯模糊 – 去噪声GaussianBlur()

- 转换为灰度图像cvtColor()

- 拉普拉斯 – 二阶导数计算Laplacian()

-取绝对值convertScaleAbs()

-显示结果

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace cv;
int main(int argc, char** argv) {
	Mat src, dst;
	src = imread("test.jpg");
	if (!src.data) {
		printf("could not load image");
	}
	char input_title[] = "input image";
	char output_title[] = "Laplaiance Result";
	namedWindow(input_title, CV_WINDOW_AUTOSIZE);
	imshow(input_title, src);

	Mat gray_src, edge_image;
	GaussianBlur(src, dst, Size(3, 3), 0, 0);
	cvtColor(dst, gray_src, CV_BGR2GRAY);

	Laplacian(gray_src, edge_image, CV_16S, 3);
	convertScaleAbs(edge_image, edge_image);

    // 边缘处理
	threshold(edge_image, edge_image, 0, 255, THRESH_OTSU | THRESH_BINARY);
	namedWindow(output_title, CV_WINDOW_AUTOSIZE);
	imshow(output_title, edge_image);

	waitKey(0);
	return 0;
}

效果展示:

三、Canny边缘检测

1、Canny算法介绍

(1)简介:Canny算法是一种经典的边缘检测算法,常用于计算机视觉和图像处理领域。

它由John F. Canny在1986年提出,并被广泛应用于图像分割、目标检测等任务中。

(3)图像处理流程:

图像处理流程:

- 高斯模糊 - GaussianBlur,对图像进行降噪,避免影响最终的结果

- 灰度转换 - cvtColor,必须是8位的灰度图像

- 计算梯度 – Sobel/Scharr

- 非最大信号抑制

- 高低阈值

- 输出二值图像

(3)非最大信号抑制:图表边缘的信号很强,边缘信号只有一个,要对非边缘信号进行抑制。要对法线或者切线方向的值去掉。

        对梯度幅值图像进行非极大值抑制。这一步骤的目的是将边缘细化为单像素宽度,并抑制非最大值区域。具体来说,对于每个像素,只有在其梯度方向上具有最大幅值的像素才被保留。

(4)高低阈值输出二值图像:

        根据两个阈值(高阈值和低阈值)对非极大值抑制后的图像进行阈值处理。高阈值用于确定强边缘,而低阈值用于确定弱边缘。具体来说,如果某个像素的梯度幅值大于高阈值,则将其标记为强边缘;如果某个像素的梯度幅值介于低阈值和高阈值之间,则将其标记为弱边缘;如果某个像素的梯度幅值小于低阈值,则将其丢弃。

一个为高阈值,一个为低阈值(T1和T2);

— T1, T2为阈值,凡是高于T2的都保留(是很强的边缘像素 ),凡是小于T1都丢弃,从高于T2的像素出发,凡是大于T1而且相互连接的,都保留。最终得到一个输出二值图像。

— 推荐的高低阈值比值为 T2: T1 = 3:1/2:1,其中T2为高阈值,T1为低阈值。

(5)边缘连接

        通过连接强边缘和与之相连的弱边缘来形成完整的边缘。具体来说,如果某个弱边缘与某个强边缘在空间上相邻接,则将其标记为强边缘。

2、API使用(代码例子)

(1)cv::Canny原型

Canny(

InputArray src, // 8-bit的输入图像

OutputArray edges,// 输出边缘图像, 一般都是二值图像,背景是黑色

double threshold1,// 低阈值,常取高阈值的1/2或者1/3

double threshold2,// 高阈值

int aptertureSize,// Soble算子的size,通常3x3,取值3

bool L2gradient // 选择 true表示是L2来归一化,否则用L1归一化

(2)代码演示

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace cv;
Mat src, gray_src, dst;
int t1_value = 50;
int max_value = 255;
const char* OUTPUT_TITLE = "Canny Result";
void Canny_Demo(int, void*);
int main(int argc, char** argv) {
	src = imread("test,jpg");
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}

	char INPUT_TITLE[] = "input image";
	namedWindow(INPUT_TITLE, CV_WINDOW_AUTOSIZE);
	namedWindow(OUTPUT_TITLE, CV_WINDOW_AUTOSIZE);
	imshow(INPUT_TITLE, src);

	cvtColor(src, gray_src, CV_BGR2GRAY);
	createTrackbar("Threshold Value:", OUTPUT_TITLE, &t1_value, max_value, Canny_Demo);
	Canny_Demo(0, 0);

	waitKey(0);
	return 0;
}

void Canny_Demo(int, void*) {
	Mat edge_output;
	blur(gray_src, gray_src, Size(3, 3), Point(-1, -1), BORDER_DEFAULT);
	Canny(gray_src, edge_output, t1_value, t1_value * 2, 3, false);

	//dst.create(src.size(), src.type());

    // 使用遮罩层,只有非零的元素才会被copy到模板中
	//src.copyTo(dst, edge_output);

    // ~取反输出
	imshow(OUTPUT_TITLE, ~edge_output);
}

效果展示:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/333531.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

每周一算法:数独游戏

题目链接 数独游戏 题目描述 数独是根据 9 9 9 \times 9 99 盘面上的已知数字&#xff0c;推理出所有剩余空格的数字&#xff0c;并满足每一行、每一列、每一个粗线宫内的数字均含 1 − 9 1 - 9 1−9 &#xff0c;不重复。每一道合格的数独谜题都有且仅有唯一答案&#x…

基于网络爬虫的天气数据分析

二、网络爬虫设计 网络爬虫原理 网络爬虫是一种自动化程序&#xff0c;用于从互联网上获取数据。其工作原理可以分为以下几个步骤&#xff1a; 定义起始点&#xff1a;网络爬虫首先需要定义一个或多个起始点&#xff08;URL&#xff09;&#xff0c;从这些起始点开始抓取数据…

中国IT产经新闻:AI人工智对就业产生影响但既是挑战也是机遇

近日国际权威人士表示&#xff0c;人工智能AI将影响全球近40%的就业岗位&#xff0c;其中相对新兴市场和低收入国家而言&#xff0c;发达经济体可能受到的冲击更大&#xff01;此言一出迅速应发了关于人工智能将对就业产生影响的大讨论&#xff01; 我们都知道随着科技的飞速发…

美摄视频SDK的HDR格式编辑方案

在当今的视觉媒体时代&#xff0c;高动态范围&#xff08;HDR&#xff09;技术已成为高质量视频内容的标配。为了满足企业对高效、高质量视频处理的需求&#xff0c;美摄科技推出了业界领先的视频SDK&#xff0c;全面支持多种HDR标准的图像视频进行处理。 一、核心优势 HDR全…

微信内测“听一听” 音乐音频业务提至一级入口;美团 AI 平台视觉中心负责人魏晓林离职;腾讯视频生成模型 VideoCrafter2;广州房价连跌12个月

今日精选 • 微信内测“听一听” 音乐音频业务提至一级入口• 美团 AI 平台视觉中心负责人魏晓林离职• 腾讯推出视频生成模型 VideoCrafter2&#xff0c;• 广州房价连跌12个月 投融资与企业动态 • TikTok 越南推出 Thu Duc Market 在线销售渠道• 亚马逊将在五年内在日本…

本地MinIO存储服务通过Java程序结合Cpolar内网穿透进行远程连接

文章目录 前言1. 创建Buckets和Access Keys2. Linux 安装Cpolar3. 创建连接MinIO服务公网地址4. 远程调用MinIO服务小结5. 固定连接TCP公网地址6. 固定地址连接测试 前言 MinIO是一款高性能、分布式的对象存储系统&#xff0c;它可以100%的运行在标准硬件上&#xff0c;即X86等…

深度学习模型之yolov8实例分割模型TesorRT部署-python版本

1 模型转换 从github上下载官方yolov8版本&#xff0c;当前使用的版本是2023年9月份更新的版本&#xff0c;作者一直在更新。官网地址 2 加载模型 模型的训练和测试在官方文档上&#xff0c;有详细的说明&#xff0c;yolov8中文文档这里不做过多说明&#xff0c;v8现在训练是…

自动化测试框架有哪些?

前言 自动化测试常用的Python框架有哪些&#xff1f;常用的框架有Robot Framework、Pytest、UnitTest/PyUnit、Behave、Lettuce。Pytest、Robot Framework和UnitTest主要用于功能与单元测试&#xff0c;Lettuce和Behave仅适用于行为驱动测试。 一、Robot Framework Python测…

2018年认证杯SPSSPRO杯数学建模B题(第二阶段)动态模糊图像全过程文档及程序

2018年认证杯SPSSPRO杯数学建模 动态模糊图像复原 B题 动态模糊图像 原题再现&#xff1a; 人眼由于存在视觉暂留效应&#xff0c;所以看运动的物体时&#xff0c;看到的每一帧画面都包含了一段时间内 (大约 1/24 秒) 的运动过程&#xff0c;所以这帧画面事实上是模糊的。对…

Linux环境下,针对QT软件工程搭建C++Test单元测试环境的操作指南

文章目录 前言一、安装QT二、安装CTest三、使用QT生成.bdf文件四、创建CTest工程注意事项 前言 CTest是Parasoft公司出品的一款可以针对C/C源代码进行静态分析、单元测试、集成测试的测试工具。本文主要讲解如何在Linux环境下&#xff0c;搭建QT插件版的CTest测试环境。 一、…

Oracle 数据库备份与恢复的重要性与最佳实践

文章目录 一、备份的重要性二、备份工具-RMAN四、比较备份策略五、实例恢复六、完全恢复与不完全恢复七、备份与恢复脚本 引言&#xff1a; 在现代信息时代&#xff0c;数据已成为组织和企业最重要的资产之一。保护和恢复数据的能力对于确保业务连续性和减少潜在风险至关重要。…

基于网络爬虫的微博热点分析,包括文本分析和主题分析

基于Python的网络爬虫的微博热点分析是一项技术上具有挑战性的任务。我们使用requests库来获取微博热点数据&#xff0c;并使用pandas对数据进行处理和分析。为了更好地理解微博热点话题&#xff0c;我们采用LDA主题分析方法&#xff0c;结合jieba分词工具将文本分割成有意义的…

基于docker创建nginx容器

docker一键安装可以参考我这个博客&#xff1a;一键安装docker 1.创建基础容器 docker run -p280:280 --name nginx -d nginx创建挂载到容器的宿主机文件夹 mkdir -p /home/000nginx-ebrms-ftp/html mkdir -p /home/000nginx-ebrms-ftp/logs mkdir -p /home/000nginx-ebrms-f…

最终Docker6:nacos集群部署

目录 mysql容器构建 1.进入soft 文件夹&#xff0c;创建mysql文件夹 2.进入conf文件夹 放入my.conf 配置文件 3.运行mysql容器 4.进入script文件夹 导入 sql文件 5.进入mysql 容器 并登录 6.创建nacos 数据库并使用&#xff0c;运行nacos.sql文件 7.授予用户所有权限 部…

Unity 编辑器篇|(十一)Gizmos (全面总结 | 建议收藏)

目录 1. 前言2 参数总览3 Gizmos绘制3.1 立方体&#xff1a;DrawCube3.2 视锥&#xff1a;DrawFrustum3.3 贴图&#xff1a;DrawGUITexture3.4 图标&#xff1a;DrawIcon3.5 线段&#xff1a;DrawLine3.6 网格&#xff1a;DrawMesh3.7 射线&#xff1a;DrawRay3.8 球体&#xf…

交通路标识别(教程代码)

交通路标识别是一种基于计算机视觉和深度学习技术的应用&#xff0c;旨在通过自动识别和分类交通路标来提高交通安全和效率。下面是对交通路标识别的介绍&#xff0c;并分点阐述其重要性和应用场景&#xff1a; 1. 交通安全增强&#xff1a; 交通路标识别可以帮助驾驶员和行人…

Educational Codeforces Round 161 (Rated for Div. 2) B 2的零次方竟然是1

目录 心情&#xff1a; 55.999999999999993&#xff1a; 题意&#xff1a; 思路&#xff1a; 核心代码&#xff1a; 心情&#xff1a; Div.2&#xff0c;我竟然在50分钟内C题做掉了&#xff0c;想着B题做了基本上不会掉分了这把&#xff0c;B题要考什么我也清楚&#xff0…

【大学物理】电势叠加原理

有限大小的带电体可以选无限远处电势为0。

ubuntu系统 vscode 配置c/c++调试环境

文章目录 1.安装插件2.目录结构3.cmake tools配置 1.安装插件 c/c插件 cmake cmake tools插件 2.目录结构 . ├── build ├── CMakeLists.txt ├── demo │ └── main.cpp ├── image.png ├── src │ ├── add.cpp │ └── add.hpp └── vsdebug.…