深度学习模型之yolov8实例分割模型TesorRT部署-python版本

1 模型转换

从github上下载官方yolov8版本,当前使用的版本是2023年9月份更新的版本,作者一直在更新。官网地址

2 加载模型

模型的训练和测试在官方文档上,有详细的说明,yolov8中文文档这里不做过多说明,v8现在训练是真的方便了,环境部署好之后,几行代码就跑起来了,例如:

from ultralytics import YOLO
from setproctitle import setproctitle
setproctitle("python|yolov8-seg 20231211")

# 载入一个模型
model = YOLO('yolov8n-seg.yaml')  # 从YAML构建一个新模型
# model = YOLO('/data/siping/preweights/yolov8n-seg.pt')    # 载入预训练模型(推荐用于训练)
# model = YOLO('yolov8m-seg.yaml').load('/data/siping/preweights/yolov8m.pt')  # 从YAML构建并传递权重

# 训练模型
model.train(task='segment',
            data='/ultralytics/cfg/datasets/coco128-seg.yaml ',
            epochs=200,
            batch=32,
            imgsz=320,
            device=1,
            translate=0
           )  # 训练模型

model.val()

# Export the model
model.export(format='onnx',imgsz=(320,320),opset=12)

模型训练完成后,对保存下来的best.pt模型转换为onnx模型,由于后期会部署到NX和其他不同类型的显卡上,因此先转换为通用的onnx模型。导出onnx代码:

# Export the model
model.export(format='onnx',imgsz=(384,640),opset=12)

导出的操作可以直接在训练的代码最后面加入一行即可。

onnx模型导出成功后,将模型拷贝到需要运行的机器上,使用tensorrt转换为trt模型,后缀可以是trt或者engine,转换代码这里总结了两个版本的转换代码:
Tensotrt 7.1:

# -*- coding: utf-8 -*- 
import tensorrt as trt
import sys
import os

TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)

def printShape(engine):
    for i in range(engine.num_bindings):
        if engine.binding_is_input(i):
            print("input layer: {}, shape is: {} ".format(i, engine.get_binding_shape(i)))
        else:
            print("output layer: {} shape is: {} ".format(i, engine.get_binding_shape(i)))

def onnx2trt(onnx_path, engine_path):
    with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
        builder.max_workspace_size = 1 << 28 # 256MB
        #builder.set_fp16_mode(True)     
        #builder.precision = trt.BuilderFlag.FP16    
        #builder.config.set_flag(trt.BuilderFlag.FP16)           
        with open(onnx_path, 'rb') as model:
            parser.parse(model.read())
        engine = builder.build_cuda_engine(network)

        printShape(engine)            

        with open(engine_path, "wb") as f:
            f.write(engine.serialize())

if __name__ == "__main__":                             
    #onnx文件路径设置
    model_name = "20240115_yolov8Seg_Person"
    input_path = model_name+".onnx"
    #引擎文件保存路径设置
    root_dir = "/ai/good_model/"
    output_path = root_dir + model_name + '.engine'
    onnx2trt(input_path, output_path)

一般是在NX上做模型转换,NX初始化的tensorrt版本较低,这个代码成功导出和部署使用。

tensorrt8.4.0.6版本转换代码:

# 导入必用依赖
import tensorrt as trt
#onnx文件路径设置
onnx_path="./repvgg.onnx"
#引擎文件保存路径设置
engine_path=r"classify.engine"
# 创建logger:日志记录器
logger = trt.Logger(trt.Logger.WARNING)
 
# 创建构建器builder
builder = trt.Builder(logger)
# 预创建网络
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
# 加载onnx解析器
parser = trt.OnnxParser(network, logger)
success = parser.parse_from_file(onnx_path)
for idx in range(parser.num_errors):
    print(parser.get_error(idx))
if not success:
    print("failed----------------")
    pass  # Error handling code here
    
# builder配置
config = builder.create_builder_config()
# 分配显存作为工作区间,一般建议为显存一半的大小
config.max_workspace_size = 12 << 30  # 1 Mi
builder.max_batch_size = 1  

   
serialized_engine = builder.build_serialized_network(network, config)
# 序列化生成engine文件
with open(engine_path, "wb") as f:
    f.write(serialized_engine)
    print("generate file success!")

这个可以成功导出8.4以上版本的onnx模型,包括CNN的分类模型等。

如果是在windows下做模型导出和测试,可以直接去官网下载一个Tensorrt对应版本的包,直接使用trtexec导出也可以。

3 算法部署

yolov8的分割模型部署代码参考yolov8 github的测试代码

3.1 加载trt模型

加载分割模型的trt模型需要注意的是模型的输入和输出的名称是否对应,可以将onnx模型通过netron查看模型的结构:
在这里插入图片描述

3.2 部署代码

部署是加载分割模型的代码:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import cv2
import os
import torch
import numpy as np
import tensorrt as trt
from utils import ops

def select_device(device='', apex=False, batch_size=None):
    # device = 'cpu' or '0' or '0,1,2,3'
    cpu_request = str(device).lower() == 'cpu'
    if str(device) and not cpu_request:  # if device requested other than 'cpu'
        os.environ['CUDA_VISIBLE_DEVICES'] = str(device)  # set environment variable
        assert torch.cuda.is_available(), 'CUDA unavailable, invalid device %s requested' % device  # check availablity

    cuda = False if cpu_request else torch.cuda.is_available()
    if cuda:
        c = 1024 ** 2  # bytes to MB
        ng = torch.cuda.device_count()
        if ng > 1 and batch_size:  # check that batch_size is compatible with device_count
            assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng)
        x = [torch.cuda.get_device_properties(i) for i in range(ng)]
        s = 'Using CUDA ' + ('Apex ' if apex else '')  # apex for mixed precision https://github.com/NVIDIA/apex
        for i in range(0, ng):
            if i == 1:
                s = ' ' * len(s)
            print("%sdevice%g _CudaDeviceProperties(name='%s', total_memory=%dMB)" %
                  (s, i, x[i].name, x[i].total_memory / c))
    else:
        print('Using CPU')

    print('')  # skip a line
    return torch.device('cuda:0' if cuda else 'cpu')

def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    if not scaleup:  # only scale down, do not scale up (for better val mAP)
        r = min(r, 1.0)

    # Compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
    if auto:  # minimum rectangle
        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding
    elif scaleFill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (new_shape[1], new_shape[0])
        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return im, ratio, (dw, dh)


DEVICE = select_device('0')
SEGLABELS = ['dbseg']
SEGWEIGHT = '20240115_yolov8Seg_lift.engine'

class TrtModelSeg():
    def __init__(self, engine_path, device,shapes=(1, 3, 320, 320)):
        """
        :param engine_path: Trt model path
        :param device: torch.device
        """
        self.device = device
        from collections import OrderedDict, namedtuple
        Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
        logger = trt.Logger(trt.Logger.INFO)
        with open(engine_path, 'rb') as f, trt.Runtime(logger) as runtime:
            model = runtime.deserialize_cuda_engine(f.read())
        self.context = model.create_execution_context()
        self.bindings = OrderedDict()
        dynamic = False
        self.input_name = model.get_binding_name(0)
        self.output_name = model.get_binding_name(1)
        self.output_name1 = model.get_binding_name(2)
        for index in range(model.num_bindings):
            name = model.get_binding_name(index)
            dtype = trt.nptype(model.get_binding_dtype(index))
            # print(model.get_binding_shape(index))
            if -1 in tuple(model.get_binding_shape(index)) and index == 0:
                self.context.set_binding_shape(index, shapes)
            shape = tuple(self.context.get_binding_shape(index))
            data = torch.from_numpy(np.empty(shape, dtype=np.dtype(dtype))).to(select_device(device))
            self.bindings[name] = Binding(name, dtype, shape, data, int(data.data_ptr()))
        self.binding_addrs = OrderedDict((n, d.ptr) for n, d in self.bindings.items())

        self.batch_size = self.bindings[self.input_name].shape[0]

    def __call__(self, img):
        """
        :param img: 输入Tensor 图片
        :return:
        """
        # assert img.shape == self.bindings['input'].shape, (img.shape, self.bindings['input'].shape)
        if img.device == torch.device('cpu'):
            img = img.float().to(select_device(self.device))
        # print('in trt dynamic def----input shape is ----',img.shape)
        self.binding_addrs[self.input_name] = int(img.data_ptr())
        self.context.execute_v2(list(self.binding_addrs.values()))
        return [self.bindings['output0'].data, self.bindings['output1'].data]

# 定义图片预处理函数
def get_input_img(image, img_size=[320, 320]):
    # Padded resize
    img,ratio,(dw,dh) = letterbox(image, img_size, stride=32, auto=False)
    img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
    # img = img.transpose((2, 0, 1))[::-1]
    img = np.ascontiguousarray(img)

    img = torch.from_numpy(img).to(DEVICE)
    img = img.float()  # uint8 to fp16/32
    img /= 255.0  # 0 - 255 to 0.0 - 1.0
    if img.ndimension() == 3:
        img = img.unsqueeze(0)
    return img,ratio,(dw,dh)

#分割模型
class YoloSeg(object):
    def __init__(self,classes=[]):
        self.conf_thr = 0.4  # conf阈值
        self.iou_thr = 0.4  # iou阈值
        self.model = self._load_model()
        try:
            self.labels = self.model.labels
            print("Seg Using meta model ! ")
        except:
            self.labels = SEGLABELS
            print("Seg Using no meta model ! ")
        self.classes = self._get_display_class(classes) if classes and isinstance(classes, list) else None
        self._warm_up(size=[320, 320])

    def _load_model(self):
        # Load seg model
        print("Load seg model! ",SEGWEIGHT)
        self.model = TrtModelSeg(SEGWEIGHT, DEVICE)

        return self.model

    def _get_display_class(self, classes):
        """只计算classes中包含的类别

        Args:
            classes (list): 只显示classes中包含的类别,其他类别将被遗弃
        """
        return [self.labels.index(c) for c in classes if c in self.labels]

    def _warm_up(self, size=[320, 320]):
        x = torch.randn((1, 3, *size)).float().to(DEVICE)
        self.model(x)

    #参考yolov8 segment/predict.py文件
    def detect_image(self, image):
        # 预处理
        img, ratio, (dw, dh) = get_input_img(image)
        # Inference
        preds = self.model(img)

        detpred = preds[0]

        masks = image
        #1.经过置信度和非极大值筛选的数值 NMS
        pred_nms = ops.non_max_suppression(detpred, self.conf_thr, self.iou_thr,nc=len(SEGLABELS))
        retina_masks = True
        proto = preds[1][-1] if len(preds[1]) == 3 else preds[1]  # second output is len 3 if pt, but only 1 if exported
        # print("proto: ",len(preds[1]),proto.shape)
        print("pred_nms: ",len(pred_nms))
        #从预测输出中提取结果
        #pred_nms是掩码信息,如果有多个mask,选择面积最大的mask,因为是吊臂
        for i, pred in enumerate(pred_nms):
            print("len(pred): ", len(pred))

            #获取原图像的大小
            shape = image.shape
            # print("image: ",shape)
            if not len(pred):  # save empty boxes
                masks = None
            elif retina_masks:
                n_class = int(pred[:,5].item())
                print("n_class: ",n_class,SEGLABELS[n_class])
                #如果标签不等于db
                if(n_class!=0):
                    continue
                #对框坐标进行处理。
                pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape)
                # print("pred[:, :4]: ",pred[:, :4])
                # 对分割结果进行后处理,输入的是proto、pred:,6:,pred[:,:4]为框坐标img.shape[:2]为(320,320)四个数据
                s_masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], shape[:2])  # HWC

                # 从(batch_size, height, width)的形状转换为(height, width, batch_size)的形状,并将结果存储在NumPy数组中。
                s_masks = (s_masks.cpu().numpy() * 255).astype(np.uint8)
                masks = s_masks.transpose(1, 2, 0)

            else:
                masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True)  # HWC
                pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape)

            print("pred,masks: ", masks.shape)

        #返回预测结果和mask
        return pred_nms,masks

def detect(yolo, image_path):
    image = cv2.imdecode(np.fromfile(image_path, dtype=np.uint8), cv2.IMREAD_COLOR)
    pred_nms, masks = yolo.detect_image(image)
    return pred_nms, masks


if __name__ == '__main__':
    image_path = r"1.jpg"
    model = TrtModelSeg(SEGWEIGHT, DEVICE,shapes=(1, 3, 320, 320))
    yoloseg = YoloSeg(SEGLABELS)
    pred_nms, masks = detect(yoloseg,image_path)
    cv2.imwrite("mask.jpg",masks)

ops.py文件:

# -*- coding: utf-8 -*-
# Ultralytics YOLO 🚀, AGPL-3.0 license

import contextlib
import math
import re
import time

import cv2
import numpy as np
import torch
import torch.nn.functional as F
import torchvision

class Profile(contextlib.ContextDecorator):
    """
    YOLOv8 Profile class. Use as a decorator with @Profile() or as a context manager with 'with Profile():'.

    Example:
        ```python
        from ultralytics.utils.ops import Profile

        with Profile() as dt:
            pass  # slow operation here

        print(dt)  # prints "Elapsed time is 9.5367431640625e-07 s"
        ```
    """

    def __init__(self, t=0.0):
        """
        Initialize the Profile class.

        Args:
            t (float): Initial time. Defaults to 0.0.
        """
        self.t = t
        self.cuda = torch.cuda.is_available()

    def __enter__(self):
        """Start timing."""
        self.start = self.time()
        return self

    def __exit__(self, type, value, traceback):  # noqa
        """Stop timing."""
        self.dt = self.time() - self.start  # delta-time
        self.t += self.dt  # accumulate dt

    def __str__(self):
        """Returns a human-readable string representing the accumulated elapsed time in the profiler."""
        return f'Elapsed time is {self.t} s'

    def time(self):
        """Get current time."""
        if self.cuda:
            torch.cuda.synchronize()
        return time.time()


def segment2box(segment, width=640, height=640):
    """
    Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy).

    Args:
        segment (torch.Tensor): the segment label
        width (int): the width of the image. Defaults to 640
        height (int): The height of the image. Defaults to 640

    Returns:
        (np.ndarray): the minimum and maximum x and y values of the segment.
    """
    # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
    x, y = segment.T  # segment xy
    inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
    x, y, = x[inside], y[inside]
    return np.array([x.min(), y.min(), x.max(), y.max()], dtype=segment.dtype) if any(x) else np.zeros(
        4, dtype=segment.dtype)  # xyxy


def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None, padding=True):
    """
    Rescales bounding boxes (in the format of xyxy) from the shape of the image they were originally specified in
    (img1_shape) to the shape of a different image (img0_shape).

    Args:
        img1_shape (tuple): The shape of the image that the bounding boxes are for, in the format of (height, width).
        boxes (torch.Tensor): the bounding boxes of the objects in the image, in the format of (x1, y1, x2, y2)
        img0_shape (tuple): the shape of the target image, in the format of (height, width).
        ratio_pad (tuple): a tuple of (ratio, pad) for scaling the boxes. If not provided, the ratio and pad will be
            calculated based on the size difference between the two images.
        padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular
            rescaling.

    Returns:
        boxes (torch.Tensor): The scaled bounding boxes, in the format of (x1, y1, x2, y2)
    """
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
        pad = round((img1_shape[1] - img0_shape[1] * gain) / 2 - 0.1), round(
            (img1_shape[0] - img0_shape[0] * gain) / 2 - 0.1)  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]

    if padding:
        boxes[..., [0, 2]] -= pad[0]  # x padding
        boxes[..., [1, 3]] -= pad[1]  # y padding
    boxes[..., :4] /= gain
    return clip_boxes(boxes, img0_shape)


def make_divisible(x, divisor):
    """
    Returns the nearest number that is divisible by the given divisor.

    Args:
        x (int): The number to make divisible.
        divisor (int | torch.Tensor): The divisor.

    Returns:
        (int): The nearest number divisible by the divisor.
    """
    if isinstance(divisor, torch.Tensor):
        divisor = int(divisor.max())  # to int
    return math.ceil(x / divisor) * divisor


#NMS
def non_max_suppression(
        prediction,
        conf_thres=0.25,
        iou_thres=0.45,
        classes=None,
        agnostic=False,
        multi_label=False,
        labels=(),
        max_det=300,
        nc=0,  # number of classes (optional)
        max_time_img=0.05,
        max_nms=30000,
        max_wh=7680,
):
    """
    Perform non-maximum suppression (NMS) on a set of boxes, with support for masks and multiple labels per box.

    Args:
        prediction (torch.Tensor): A tensor of shape (batch_size, num_classes + 4 + num_masks, num_boxes)
            containing the predicted boxes, classes, and masks. The tensor should be in the format
            output by a model, such as YOLO.
        conf_thres (float): The confidence threshold below which boxes will be filtered out.
            Valid values are between 0.0 and 1.0.
        iou_thres (float): The IoU threshold below which boxes will be filtered out during NMS.
            Valid values are between 0.0 and 1.0.
        classes (List[int]): A list of class indices to consider. If None, all classes will be considered.
        agnostic (bool): If True, the model is agnostic to the number of classes, and all
            classes will be considered as one.
        multi_label (bool): If True, each box may have multiple labels.
        labels (List[List[Union[int, float, torch.Tensor]]]): A list of lists, where each inner
            list contains the apriori labels for a given image. The list should be in the format
            output by a dataloader, with each label being a tuple of (class_index, x1, y1, x2, y2).
        max_det (int): The maximum number of boxes to keep after NMS.
        nc (int, optional): The number of classes output by the model. Any indices after this will be considered masks.
        max_time_img (float): The maximum time (seconds) for processing one image.
        max_nms (int): The maximum number of boxes into torchvision.ops.nms().
        max_wh (int): The maximum box width and height in pixels

    Returns:
        (List[torch.Tensor]): A list of length batch_size, where each element is a tensor of
            shape (num_boxes, 6 + num_masks) containing the kept boxes, with columns
            (x1, y1, x2, y2, confidence, class, mask1, mask2, ...).
    """

    # Checks


    #先判断设置的置信度和iou阈值是否在0和1之间,如不在,则报错是不符合要求的阈值。
    assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
    assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'

    #判读那输入的prediction类型,如果之前没有进行提取,则此处再进行提取,如提取过,则直接跳过。

    if isinstance(prediction, (list, tuple)):  # YOLOv8 model in validation model, output = (inference_out, loss_out)
        prediction = prediction[0]  # select only inference output


    bs = prediction.shape[0]  # batch size
    nc = nc or (prediction.shape[1] - 4)  # number of classes 获取类别数目nc,本文是1,其中nm为32是mask的数量
    nm = prediction.shape[1] - nc - 4
    mi = 4 + nc  # mask start index mi为读取mask开始的位置,即数组前边是框、类别置信度,然后是mask
    xc = prediction[:, 4:mi].amax(1) > conf_thres
    # candidates xc为根据置信度分数从结果中筛选结果,即分数大于置信度的为True,小于的为False

    # Settings
    # min_wh = 2  # (pixels) minimum box width and height
    time_limit = 0.5 + max_time_img * bs  # seconds to quit after
    multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)

    prediction = prediction.transpose(-1, -2)  # shape(1,84,6300) to shape(1,6300,84)
    prediction[..., :4] = xywh2xyxy(prediction[..., :4])  # xywh to xyxy

    t = time.time()
    output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs
    for xi, x in enumerate(prediction):  # image index, image inference
        # Apply constraints
        # x[((x[:, 2:4] < min_wh) | (x[:, 2:4] > max_wh)).any(1), 4] = 0  # width-height
        x = x[xc[xi]]  # confidence

        # Cat apriori labels if autolabelling
        if labels and len(labels[xi]):
            lb = labels[xi]
            v = torch.zeros((len(lb), nc + nm + 4), device=x.device)
            v[:, :4] = xywh2xyxy(lb[:, 1:5])  # box
            v[range(len(lb)), lb[:, 0].long() + 4] = 1.0  # cls
            x = torch.cat((x, v), 0)

        # If none remain process next image
        if not x.shape[0]:
            continue

        # Detections matrix nx6 (xyxy, conf, cls)
        box, cls, mask = x.split((4, nc, nm), 1)

        if multi_label:
            i, j = torch.where(cls > conf_thres)
            x = torch.cat((box[i], x[i, 4 + j, None], j[:, None].float(), mask[i]), 1)
        else:  # best class only
            conf, j = cls.max(1, keepdim=True)
            x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]

        # Filter by class
        if classes is not None:
            x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]

        # Check shape
        n = x.shape[0]  # number of boxes
        if not n:  # no boxes
            continue
        if n > max_nms:  # excess boxes
            x = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence and remove excess boxes

        # Batched NMS
        c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
        boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
        i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
        i = i[:max_det]  # limit detections

        # # Experimental
        # merge = False  # use merge-NMS
        # if merge and (1 < n < 3E3):  # Merge NMS (boxes merged using weighted mean)
        #     # Update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
        #     from .metrics import box_iou
        #     iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
        #     weights = iou * scores[None]  # box weights
        #     x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
        #     redundant = True  # require redundant detections
        #     if redundant:
        #         i = i[iou.sum(1) > 1]  # require redundancy

        output[xi] = x[i]
        if (time.time() - t) > time_limit:
            print(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded')
            break  # time limit exceeded
    """
    到此处,此幅图像经过了置信度阈值判断和非极大值抑制处理,确定了图像中的目标类别、分数和框的位置。
    """
    return output


def clip_boxes(boxes, shape):
    """
    Takes a list of bounding boxes and a shape (height, width) and clips the bounding boxes to the shape.

    Args:
        boxes (torch.Tensor): the bounding boxes to clip
        shape (tuple): the shape of the image

    Returns:
        (torch.Tensor | numpy.ndarray): Clipped boxes
    """
    if isinstance(boxes, torch.Tensor):  # faster individually (WARNING: inplace .clamp_() Apple MPS bug)
        boxes[..., 0] = boxes[..., 0].clamp(0, shape[1])  # x1
        boxes[..., 1] = boxes[..., 1].clamp(0, shape[0])  # y1
        boxes[..., 2] = boxes[..., 2].clamp(0, shape[1])  # x2
        boxes[..., 3] = boxes[..., 3].clamp(0, shape[0])  # y2
    else:  # np.array (faster grouped)
        boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1])  # x1, x2
        boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0])  # y1, y2
    return boxes


def clip_coords(coords, shape):
    """
    Clip line coordinates to the image boundaries.

    Args:
        coords (torch.Tensor | numpy.ndarray): A list of line coordinates.
        shape (tuple): A tuple of integers representing the size of the image in the format (height, width).

    Returns:
        (torch.Tensor | numpy.ndarray): Clipped coordinates
    """
    if isinstance(coords, torch.Tensor):  # faster individually (WARNING: inplace .clamp_() Apple MPS bug)
        coords[..., 0] = coords[..., 0].clamp(0, shape[1])  # x
        coords[..., 1] = coords[..., 1].clamp(0, shape[0])  # y
    else:  # np.array (faster grouped)
        coords[..., 0] = coords[..., 0].clip(0, shape[1])  # x
        coords[..., 1] = coords[..., 1].clip(0, shape[0])  # y
    return coords


def scale_image(masks, im0_shape, ratio_pad=None):
    """
    Takes a mask, and resizes it to the original image size.

    Args:
        masks (np.ndarray): resized and padded masks/images, [h, w, num]/[h, w, 3].
        im0_shape (tuple): the original image shape
        ratio_pad (tuple): the ratio of the padding to the original image.

    Returns:
        masks (torch.Tensor): The masks that are being returned.
    """
    # Rescale coordinates (xyxy) from im1_shape to im0_shape
    im1_shape = masks.shape
    if im1_shape[:2] == im0_shape[:2]:
        return masks
    if ratio_pad is None:  # calculate from im0_shape
        gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1])  # gain  = old / new
        pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]
    top, left = (int(round(pad[1] - 0.1)), int(round(pad[0] - 0.1)))  # y, x
    bottom, right = (int(round(im1_shape[0] - pad[1] + 0.1)), int(round(im1_shape[1] - pad[0] + 0.1)))

    if len(masks.shape) < 2:
        raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
    masks = masks[top:bottom, left:right]
    masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]))
    if len(masks.shape) == 2:
        masks = masks[:, :, None]

    return masks


def xyxy2xywh(x):
    """
    Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height) format where (x1, y1) is the
    top-left corner and (x2, y2) is the bottom-right corner.

    Args:
        x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format.

    Returns:
        y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height) format.
    """
    assert x.shape[-1] == 4, f'input shape last dimension expected 4 but input shape is {x.shape}'
    y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x)  # faster than clone/copy
    y[..., 0] = (x[..., 0] + x[..., 2]) / 2  # x center
    y[..., 1] = (x[..., 1] + x[..., 3]) / 2  # y center
    y[..., 2] = x[..., 2] - x[..., 0]  # width
    y[..., 3] = x[..., 3] - x[..., 1]  # height
    return y


def xywh2xyxy(x):
    """
    Convert bounding box coordinates from (x, y, width, height) format to (x1, y1, x2, y2) format where (x1, y1) is the
    top-left corner and (x2, y2) is the bottom-right corner.

    Args:
        x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x, y, width, height) format.

    Returns:
        y (np.ndarray | torch.Tensor): The bounding box coordinates in (x1, y1, x2, y2) format.
    """
    assert x.shape[-1] == 4, f'input shape last dimension expected 4 but input shape is {x.shape}'
    y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x)  # faster than clone/copy
    dw = x[..., 2] / 2  # half-width
    dh = x[..., 3] / 2  # half-height
    y[..., 0] = x[..., 0] - dw  # top left x
    y[..., 1] = x[..., 1] - dh  # top left y
    y[..., 2] = x[..., 0] + dw  # bottom right x
    y[..., 3] = x[..., 1] + dh  # bottom right y
    return y


def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
    """
    Convert normalized bounding box coordinates to pixel coordinates.

    Args:
        x (np.ndarray | torch.Tensor): The bounding box coordinates.
        w (int): Width of the image. Defaults to 640
        h (int): Height of the image. Defaults to 640
        padw (int): Padding width. Defaults to 0
        padh (int): Padding height. Defaults to 0
    Returns:
        y (np.ndarray | torch.Tensor): The coordinates of the bounding box in the format [x1, y1, x2, y2] where
            x1,y1 is the top-left corner, x2,y2 is the bottom-right corner of the bounding box.
    """
    assert x.shape[-1] == 4, f'input shape last dimension expected 4 but input shape is {x.shape}'
    y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x)  # faster than clone/copy
    y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw  # top left x
    y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh  # top left y
    y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw  # bottom right x
    y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh  # bottom right y
    return y


def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
    """
    Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height, normalized) format. x, y,
    width and height are normalized to image dimensions.

    Args:
        x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format.
        w (int): The width of the image. Defaults to 640
        h (int): The height of the image. Defaults to 640
        clip (bool): If True, the boxes will be clipped to the image boundaries. Defaults to False
        eps (float): The minimum value of the box's width and height. Defaults to 0.0

    Returns:
        y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height, normalized) format
    """
    if clip:
        x = clip_boxes(x, (h - eps, w - eps))
    assert x.shape[-1] == 4, f'input shape last dimension expected 4 but input shape is {x.shape}'
    y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x)  # faster than clone/copy
    y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w  # x center
    y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h  # y center
    y[..., 2] = (x[..., 2] - x[..., 0]) / w  # width
    y[..., 3] = (x[..., 3] - x[..., 1]) / h  # height
    return y


def xywh2ltwh(x):
    """
    Convert the bounding box format from [x, y, w, h] to [x1, y1, w, h], where x1, y1 are the top-left coordinates.

    Args:
        x (np.ndarray | torch.Tensor): The input tensor with the bounding box coordinates in the xywh format

    Returns:
        y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format
    """
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[..., 0] = x[..., 0] - x[..., 2] / 2  # top left x
    y[..., 1] = x[..., 1] - x[..., 3] / 2  # top left y
    return y


def xyxy2ltwh(x):
    """
    Convert nx4 bounding boxes from [x1, y1, x2, y2] to [x1, y1, w, h], where xy1=top-left, xy2=bottom-right.

    Args:
        x (np.ndarray | torch.Tensor): The input tensor with the bounding boxes coordinates in the xyxy format

    Returns:
        y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format.
    """
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[..., 2] = x[..., 2] - x[..., 0]  # width
    y[..., 3] = x[..., 3] - x[..., 1]  # height
    return y


def ltwh2xywh(x):
    """
    Convert nx4 boxes from [x1, y1, w, h] to [x, y, w, h] where xy1=top-left, xy=center.

    Args:
        x (torch.Tensor): the input tensor

    Returns:
        y (np.ndarray | torch.Tensor): The bounding box coordinates in the xywh format.
    """
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[..., 0] = x[..., 0] + x[..., 2] / 2  # center x
    y[..., 1] = x[..., 1] + x[..., 3] / 2  # center y
    return y


def xyxyxyxy2xywhr(corners):
    """
    Convert batched Oriented Bounding Boxes (OBB) from [xy1, xy2, xy3, xy4] to [xywh, rotation].

    Args:
        corners (numpy.ndarray | torch.Tensor): Input corners of shape (n, 8).

    Returns:
        (numpy.ndarray | torch.Tensor): Converted data in [cx, cy, w, h, rotation] format of shape (n, 5).
    """
    is_numpy = isinstance(corners, np.ndarray)
    atan2, sqrt = (np.arctan2, np.sqrt) if is_numpy else (torch.atan2, torch.sqrt)

    x1, y1, x2, y2, x3, y3, x4, y4 = corners.T
    cx = (x1 + x3) / 2
    cy = (y1 + y3) / 2
    dx21 = x2 - x1
    dy21 = y2 - y1

    w = sqrt(dx21 ** 2 + dy21 ** 2)
    h = sqrt((x2 - x3) ** 2 + (y2 - y3) ** 2)

    rotation = atan2(-dy21, dx21)
    rotation *= 180.0 / math.pi  # radians to degrees

    return np.vstack((cx, cy, w, h, rotation)).T if is_numpy else torch.stack((cx, cy, w, h, rotation), dim=1)


def xywhr2xyxyxyxy(center):
    """
    Convert batched Oriented Bounding Boxes (OBB) from [xywh, rotation] to [xy1, xy2, xy3, xy4].

    Args:
        center (numpy.ndarray | torch.Tensor): Input data in [cx, cy, w, h, rotation] format of shape (n, 5).

    Returns:
        (numpy.ndarray | torch.Tensor): Converted corner points of shape (n, 8).
    """
    is_numpy = isinstance(center, np.ndarray)
    cos, sin = (np.cos, np.sin) if is_numpy else (torch.cos, torch.sin)

    cx, cy, w, h, rotation = center.T
    rotation *= math.pi / 180.0  # degrees to radians

    dx = w / 2
    dy = h / 2

    cos_rot = cos(rotation)
    sin_rot = sin(rotation)
    dx_cos_rot = dx * cos_rot
    dx_sin_rot = dx * sin_rot
    dy_cos_rot = dy * cos_rot
    dy_sin_rot = dy * sin_rot

    x1 = cx - dx_cos_rot - dy_sin_rot
    y1 = cy + dx_sin_rot - dy_cos_rot
    x2 = cx + dx_cos_rot - dy_sin_rot
    y2 = cy - dx_sin_rot - dy_cos_rot
    x3 = cx + dx_cos_rot + dy_sin_rot
    y3 = cy - dx_sin_rot + dy_cos_rot
    x4 = cx - dx_cos_rot + dy_sin_rot
    y4 = cy + dx_sin_rot + dy_cos_rot

    return np.vstack((x1, y1, x2, y2, x3, y3, x4, y4)).T if is_numpy else torch.stack(
        (x1, y1, x2, y2, x3, y3, x4, y4), dim=1)


def ltwh2xyxy(x):
    """
    It converts the bounding box from [x1, y1, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right.

    Args:
        x (np.ndarray | torch.Tensor): the input image

    Returns:
        y (np.ndarray | torch.Tensor): the xyxy coordinates of the bounding boxes.
    """
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[..., 2] = x[..., 2] + x[..., 0]  # width
    y[..., 3] = x[..., 3] + x[..., 1]  # height
    return y


def segments2boxes(segments):
    """
    It converts segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)

    Args:
        segments (list): list of segments, each segment is a list of points, each point is a list of x, y coordinates

    Returns:
        (np.ndarray): the xywh coordinates of the bounding boxes.
    """
    boxes = []
    for s in segments:
        x, y = s.T  # segment xy
        boxes.append([x.min(), y.min(), x.max(), y.max()])  # cls, xyxy
    return xyxy2xywh(np.array(boxes))  # cls, xywh


def resample_segments(segments, n=1000):
    """
    Inputs a list of segments (n,2) and returns a list of segments (n,2) up-sampled to n points each.

    Args:
        segments (list): a list of (n,2) arrays, where n is the number of points in the segment.
        n (int): number of points to resample the segment to. Defaults to 1000

    Returns:
        segments (list): the resampled segments.
    """
    for i, s in enumerate(segments):
        s = np.concatenate((s, s[0:1, :]), axis=0)
        x = np.linspace(0, len(s) - 1, n)
        xp = np.arange(len(s))
        segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)],
                                     dtype=np.float32).reshape(2, -1).T  # segment xy
    return segments


#裁剪掩码mask 输入的是masks和downsampled_bboxes
def crop_mask(masks, boxes):
    """
    It takes a mask and a bounding box, and returns a mask that is cropped to the bounding box.

    Args:
        masks (torch.Tensor): [n, h, w] tensor of masks
        boxes (torch.Tensor): [n, 4] tensor of bbox coordinates in relative point form

    Returns:
        (torch.Tensor): The masks are being cropped to the bounding box.



    确保masks的值在图像大小范围之内。

    masks.gt_(0.5)判断masks中的值是否大于0.5,大于则为true。
    """

    n, h, w = masks.shape
    # print("n, h, w :",masks.shape)
    #然后对boxes的内容进行拆分,torch.chunk(),拆分为四个,x1, y1, x2, y2
    x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1)  # x1 shape(n,1,1)
    r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :]  # rows shape(1,1,w)
    c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None]  # cols shape(1,h,1)

    return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))


def process_mask_upsample(protos, masks_in, bboxes, shape):
    """
    Takes the output of the mask head, and applies the mask to the bounding boxes. This produces masks of higher quality
    but is slower.

    Args:
        protos (torch.Tensor): [mask_dim, mask_h, mask_w]
        masks_in (torch.Tensor): [n, mask_dim], n is number of masks after nms
        bboxes (torch.Tensor): [n, 4], n is number of masks after nms
        shape (tuple): the size of the input image (h,w)

    Returns:
        (torch.Tensor): The upsampled masks.
    """
    c, mh, mw = protos.shape  # CHW
    masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
    masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0]  # CHW
    masks = crop_mask(masks, bboxes)  # CHW

    #判断masks中的值是否大于0.5,大于则为true
    return masks.gt_(0.5)


def process_mask(protos, masks_in, bboxes, shape, upsample=False):
    """
    Apply masks to bounding boxes using the output of the mask head.

    Args:
        protos (torch.Tensor): A tensor of shape [mask_dim, mask_h, mask_w].
        masks_in (torch.Tensor): A tensor of shape [n, mask_dim], where n is the number of masks after NMS.
        bboxes (torch.Tensor): A tensor of shape [n, 4], where n is the number of masks after NMS.
        shape (tuple): A tuple of integers representing the size of the input image in the format (h, w).
        upsample (bool): A flag to indicate whether to upsample the mask to the original image size. Default is False.

    Returns:
        (torch.Tensor): A binary mask tensor of shape [n, h, w], where n is the number of masks after NMS, and h and w
            are the height and width of the input image. The mask is applied to the bounding boxes.
    """

    c, mh, mw = protos.shape  # CHW
    ih, iw = shape
    masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)  # CHW

    downsampled_bboxes = bboxes.clone()
    downsampled_bboxes[:, 0] *= mw / iw
    downsampled_bboxes[:, 2] *= mw / iw
    downsampled_bboxes[:, 3] *= mh / ih
    downsampled_bboxes[:, 1] *= mh / ih

    masks = crop_mask(masks, downsampled_bboxes)  # CHW
    if upsample:
        masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0]  # CHW
    return masks.gt_(0.5)


def process_mask_native(protos, masks_in, bboxes, shape):
    """
    It takes the output of the mask head, and crops it after upsampling to the bounding boxes.

    Args:
        protos (torch.Tensor): [mask_dim, mask_h, mask_w]
        masks_in (torch.Tensor): [n, mask_dim], n is number of masks after nms
        bboxes (torch.Tensor): [n, 4], n is number of masks after nms
        shape (tuple): the size of the input image (h,w)

    Returns:
        masks (torch.Tensor): The returned masks with dimensions [h, w, n]



    """
    c, mh, mw = protos.shape  # CHW
    masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
    masks = scale_masks(masks[None], shape)[0]  # CHW
    masks = crop_mask(masks, bboxes)  # CHW
    return masks.gt_(0.5)


def scale_masks(masks, shape, padding=True):
    """
    Rescale segment masks to shape.

    Args:
        masks (torch.Tensor): (N, C, H, W).
        shape (tuple): Height and width.
        padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular
            rescaling.
    """
    mh, mw = masks.shape[2:]
    gain = min(mh / shape[0], mw / shape[1])  # gain  = old / new
    pad = [mw - shape[1] * gain, mh - shape[0] * gain]  # wh padding
    if padding:
        pad[0] /= 2
        pad[1] /= 2
    top, left = (int(round(pad[1] - 0.1)), int(round(pad[0] - 0.1))) if padding else (0, 0)  # y, x
    bottom, right = (int(round(mh - pad[1] + 0.1)), int(round(mw - pad[0] + 0.1)))
    masks = masks[..., top:bottom, left:right]

    masks = F.interpolate(masks, shape, mode='bilinear', align_corners=False)  # NCHW
    return masks


def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None, normalize=False, padding=True):
    """
    Rescale segment coordinates (xy) from img1_shape to img0_shape.

    Args:
        img1_shape (tuple): The shape of the image that the coords are from.
        coords (torch.Tensor): the coords to be scaled of shape n,2.
        img0_shape (tuple): the shape of the image that the segmentation is being applied to.
        ratio_pad (tuple): the ratio of the image size to the padded image size.
        normalize (bool): If True, the coordinates will be normalized to the range [0, 1]. Defaults to False.
        padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular
            rescaling.

    Returns:
        coords (torch.Tensor): The scaled coordinates.
    """
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]

    if padding:
        coords[..., 0] -= pad[0]  # x padding
        coords[..., 1] -= pad[1]  # y padding
    coords[..., 0] /= gain
    coords[..., 1] /= gain
    coords = clip_coords(coords, img0_shape)
    if normalize:
        coords[..., 0] /= img0_shape[1]  # width
        coords[..., 1] /= img0_shape[0]  # height
    return coords


def masks2segments(masks, strategy='largest'):
    """
    It takes a list of masks(n,h,w) and returns a list of segments(n,xy)

    Args:
        masks (torch.Tensor): the output of the model, which is a tensor of shape (batch_size, 160, 160)
        strategy (str): 'concat' or 'largest'. Defaults to largest

    Returns:
        segments (List): list of segment masks
    """
    segments = []
    for x in masks.int().cpu().numpy().astype('uint8'):
        c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
        if c:
            if strategy == 'concat':  # concatenate all segments
                c = np.concatenate([x.reshape(-1, 2) for x in c])
            elif strategy == 'largest':  # select largest segment
                c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
        else:
            c = np.zeros((0, 2))  # no segments found
        segments.append(c.astype('float32'))
    return segments


def convert_torch2numpy_batch(batch: torch.Tensor) -> np.ndarray:
    """
    Convert a batch of FP32 torch tensors (0.0-1.0) to a NumPy uint8 array (0-255), changing from BCHW to BHWC layout.

    Args:
        batch (torch.Tensor): Input tensor batch of shape (Batch, Channels, Height, Width) and dtype torch.float32.

    Returns:
        (np.ndarray): Output NumPy array batch of shape (Batch, Height, Width, Channels) and dtype uint8.
    """
    return (batch.permute(0, 2, 3, 1).contiguous() * 255).clamp(0, 255).to(torch.uint8).cpu().numpy()


def clean_str(s):
    """
    Cleans a string by replacing special characters with underscore _

    Args:
        s (str): a string needing special characters replaced

    Returns:
        (str): a string with special characters replaced by an underscore _
    """
    return re.sub(pattern='[|@#!¡·$€%&()=?¿^*;:,¨´><+]', repl='_', string=s)


#mask处理
def masks(img,masks, colors, im_gpu, alpha=0.5, retina_masks=False):
    """save masks at once.
    Args:
        masks (tensor): predicted masks on cuda, shape: [n, h, w]
        colors (List[List[Int]]): colors for predicted masks, [[r, g, b] * n]
        im_gpu (tensor): img is in cuda, shape: [3, h, w], range: [0, 1]
        alpha (float): mask transparency: 0.0 fully transparent, 1.0 opaque
    """
    if len(masks) == 0:
       img = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
    colors = torch.tensor(colors, device=im_gpu.device, dtype=torch.float32) / 255.0
    colors = colors[:, None, None]  # shape(n,1,1,3)
    masks = masks.unsqueeze(3)  # shape(n,h,w,1)
    masks_color = masks * (colors * alpha)  # shape(n,h,w,3)

    inv_alph_masks = (1 - masks * alpha).cumprod(0)  # shape(n,h,w,1)
    mcs = (masks_color * inv_alph_masks).sum(0) * 2  # mask color summand shape(n,h,w,3)

    im_gpu = im_gpu.flip(dims=[0])  # flip channel
    im_gpu = im_gpu.permute(1, 2, 0).contiguous()  # shape(h,w,3)
    im_gpu = im_gpu * inv_alph_masks[-1] + mcs
    im_mask = (im_gpu * 255)
    im_mask_np = im_mask.byte().cpu().numpy()
    img = im_mask_np if retina_masks else scale_image(im_gpu.shape, im_mask_np, img.shape)

其中上面代码中的opt是官方代码,在models/utils/ops.py中,直接拿过来用就行了,以上的推理代码也是参考的训练模型的代码中的models/segments/predict.py函数,最终完成模型的部署。

4 测试结果

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/333522.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

自动化测试框架有哪些?

前言 自动化测试常用的Python框架有哪些&#xff1f;常用的框架有Robot Framework、Pytest、UnitTest/PyUnit、Behave、Lettuce。Pytest、Robot Framework和UnitTest主要用于功能与单元测试&#xff0c;Lettuce和Behave仅适用于行为驱动测试。 一、Robot Framework Python测…

2018年认证杯SPSSPRO杯数学建模B题(第二阶段)动态模糊图像全过程文档及程序

2018年认证杯SPSSPRO杯数学建模 动态模糊图像复原 B题 动态模糊图像 原题再现&#xff1a; 人眼由于存在视觉暂留效应&#xff0c;所以看运动的物体时&#xff0c;看到的每一帧画面都包含了一段时间内 (大约 1/24 秒) 的运动过程&#xff0c;所以这帧画面事实上是模糊的。对…

Linux环境下,针对QT软件工程搭建C++Test单元测试环境的操作指南

文章目录 前言一、安装QT二、安装CTest三、使用QT生成.bdf文件四、创建CTest工程注意事项 前言 CTest是Parasoft公司出品的一款可以针对C/C源代码进行静态分析、单元测试、集成测试的测试工具。本文主要讲解如何在Linux环境下&#xff0c;搭建QT插件版的CTest测试环境。 一、…

Oracle 数据库备份与恢复的重要性与最佳实践

文章目录 一、备份的重要性二、备份工具-RMAN四、比较备份策略五、实例恢复六、完全恢复与不完全恢复七、备份与恢复脚本 引言&#xff1a; 在现代信息时代&#xff0c;数据已成为组织和企业最重要的资产之一。保护和恢复数据的能力对于确保业务连续性和减少潜在风险至关重要。…

基于网络爬虫的微博热点分析,包括文本分析和主题分析

基于Python的网络爬虫的微博热点分析是一项技术上具有挑战性的任务。我们使用requests库来获取微博热点数据&#xff0c;并使用pandas对数据进行处理和分析。为了更好地理解微博热点话题&#xff0c;我们采用LDA主题分析方法&#xff0c;结合jieba分词工具将文本分割成有意义的…

基于docker创建nginx容器

docker一键安装可以参考我这个博客&#xff1a;一键安装docker 1.创建基础容器 docker run -p280:280 --name nginx -d nginx创建挂载到容器的宿主机文件夹 mkdir -p /home/000nginx-ebrms-ftp/html mkdir -p /home/000nginx-ebrms-ftp/logs mkdir -p /home/000nginx-ebrms-f…

最终Docker6:nacos集群部署

目录 mysql容器构建 1.进入soft 文件夹&#xff0c;创建mysql文件夹 2.进入conf文件夹 放入my.conf 配置文件 3.运行mysql容器 4.进入script文件夹 导入 sql文件 5.进入mysql 容器 并登录 6.创建nacos 数据库并使用&#xff0c;运行nacos.sql文件 7.授予用户所有权限 部…

Unity 编辑器篇|(十一)Gizmos (全面总结 | 建议收藏)

目录 1. 前言2 参数总览3 Gizmos绘制3.1 立方体&#xff1a;DrawCube3.2 视锥&#xff1a;DrawFrustum3.3 贴图&#xff1a;DrawGUITexture3.4 图标&#xff1a;DrawIcon3.5 线段&#xff1a;DrawLine3.6 网格&#xff1a;DrawMesh3.7 射线&#xff1a;DrawRay3.8 球体&#xf…

交通路标识别(教程代码)

交通路标识别是一种基于计算机视觉和深度学习技术的应用&#xff0c;旨在通过自动识别和分类交通路标来提高交通安全和效率。下面是对交通路标识别的介绍&#xff0c;并分点阐述其重要性和应用场景&#xff1a; 1. 交通安全增强&#xff1a; 交通路标识别可以帮助驾驶员和行人…

Educational Codeforces Round 161 (Rated for Div. 2) B 2的零次方竟然是1

目录 心情&#xff1a; 55.999999999999993&#xff1a; 题意&#xff1a; 思路&#xff1a; 核心代码&#xff1a; 心情&#xff1a; Div.2&#xff0c;我竟然在50分钟内C题做掉了&#xff0c;想着B题做了基本上不会掉分了这把&#xff0c;B题要考什么我也清楚&#xff0…

【大学物理】电势叠加原理

有限大小的带电体可以选无限远处电势为0。

ubuntu系统 vscode 配置c/c++调试环境

文章目录 1.安装插件2.目录结构3.cmake tools配置 1.安装插件 c/c插件 cmake cmake tools插件 2.目录结构 . ├── build ├── CMakeLists.txt ├── demo │ └── main.cpp ├── image.png ├── src │ ├── add.cpp │ └── add.hpp └── vsdebug.…

java springcloud中发布webservice 接口

java springcloud中发布webservice 接口 一、在pom文件中添加依赖&#xff1a; <!--webservice--><dependency><groupId>javax.xml.bind</groupId><artifactId>jaxb-api</artifactId><version>2.3.0</version></dependen…

【JavaEE进阶】 依赖注⼊DI详解

文章目录 &#x1f334;什么是依赖注入&#x1f384;依赖注入的三种方法&#x1f6a9;属性注⼊(Field Injection)&#x1f6a9;构造⽅法注⼊&#x1f6a9;Setter注⼊&#x1f6a9;三种注⼊的优缺点 &#x1f333;Autowired存在的问题&#x1f332;解决Autowired存在的问题&…

经纬恒润4D成像毫米波雷达亮相 CES 2024

在刚刚结束的CES 2024上&#xff0c;经纬恒润联合以色列Arbe Robotics公司展出了基于Arbe芯片组方案的4D成像毫米波雷达LRR610。 经纬恒润自主研发的4D成像毫米波雷达LRR610&#xff0c;具备48发48收通道&#xff0c;在方位和俯仰向均具有高分辨能力&#xff0c;可以形成丰富的…

FPGA(基于xilinx)中PCIe介绍以及IP核XDMA的使用

Xilinx中PCIe简介以及IP核XDMA的使用 例如&#xff1a;第一章 PCIe简介以及IP核的使用 文章目录 Xilinx中PCIe简介以及IP核XDMA的使用一、PCIe总线概述1.PCIe 总线架构2.PCIe 不同版本的性能指标及带宽计算3.PCIe 接口信号 二、XDMA1.XDMA 与其它 PCIe IP 的区别2.XDMA简介 三…

【clickhouse】Array数组查询操作

文章目录 1 测试数据2 查询3 所用函数3.1 arrayExists3.2 coalesce 1 测试数据 // 建库 create database test;// 建表 CREATE TABLE test.test ( id String, tag1 Array(String), tag2 Array(Int32), updated DateTime ) ENGINE MergeTree ORDER BY id// 插入数据 insert in…

React配置src根目录@

文章目录 1.打开webpack配置文件2.配置webpack 1.打开webpack配置文件 yarn eject or npm run eject 如果报错了记得提前 git commit一下 2.配置webpack 找到 webpack.config.js 文件在 webpack.config.js 文件中找到 alias 配置在alias里添加: path.resolve(src) , 或者 : pa…

2019年认证杯SPSSPRO杯数学建模D题(第二阶段)5G时代引发的道路规划革命全过程文档及程序

2019年认证杯SPSSPRO杯数学建模 D题 5G时代引发的道路规划革命 原题再现&#xff1a; 忙着回家或上班的司机们都知道交通堵塞既浪费时间又浪费燃料&#xff0c;甚至有的时候会带来情绪上的巨大影响&#xff0c;引发一系列的交通问题。据报道&#xff0c;每年交通拥堵使得美国…

AGI即将出现,未来最重要的资源是算力和能源

丨划重点 ① 关于新模型的名字&#xff0c;奥特曼还没有明确的想法&#xff0c;但他称不喜欢像“iPhone 27”这样的命名方式。 ② 奥特曼认为AGI将在不久的将来出现&#xff0c;但对社会和工作的影响程度可能远低于预期。 ③ 奥特曼表示&#xff0c;尽管AI的潜力超过预期&#…