军事智能中的深度强化学习不同于传统的深度强化学习

在军事智能中,“诡”和“诈”是两个最重要的概念。

“诡”变指的是智能体通过采取一些不可预测或复杂的变化策略来获得优势。诡变可能包括逃避对手的观察或引诱对手采取不利的行动。智能体可以使用诡变来欺骗对手,使其做出错误的决策或暴露其策略。

“诈”骗是指智能体故意误导对手,使其对环境的真实情况产生误解。智能体可以通过改变自己的行为模式、隐藏自己的意图或制造虚假信息来欺骗对手。欺诈可以用于隐藏智能体的真实意图,使对手无法准确预测智能体的行为,并为智能体创造更有利的条件。

军事博弈环境下深度强化学习中的诡变和欺诈是智能体为了最大化自己的回报而采取的策略。这些策略可以使智能体获得与纯合作或遵循规则行为不同的结果。诡变和欺诈的存在使得博弈环境下的深度强化学习更加复杂和具有挑战性。

一、军事环境下的深度学习和传统的深度学习之间存在一些不同之处

1、数据生成和标注

军事环境下的深度学习需要通过与其他智能体或环境进行交互来生成数据。相比之下,传统的深度学习通常使用已标注的静态数据集进行训练。

2、增强学习算法

军事环境下的深度学习通常使用增强学习算法来训练智能体。增强学习是一种通过与环境交互学习最优策略的方法。传统的深度学习通常使用监督学习算法。

3、求解目标

军事环境下的深度学习的目标是通过与其他智能体竞争或合作来学习最佳行动策略。传统的深度学习通常是为了解决特定的任务或问题。

4、环境动态性

军事环境下的深度学习需要考虑环境的动态性和其他智能体的行为。传统的深度学习通常只需考虑输入数据的静态特征。

尽管存在这些不同之处,军事环境下的深度学习仍然可以借鉴传统深度学习的方法和技术。例如,可以使用卷积神经网络或循环神经网络来处理博弈环境中的输入数据,并通过反向传播算法来训练模型参数。此外,传统深度学习中的一些优化算法和模型结构也可以应用于博弈环境下的深度学习中。

二、军事环境下的强化学习和传统的强化学习是两种不同的学习方式

传统的强化学习是指在一个单智能体环境中进行学习,该智能体通过与环境的交互来学习最优策略。这种学习方式涉及到智能体与环境的动态交互,智能体根据环境的奖励反馈来调整自己的行为,以获得最大化的奖励。

而军事环境下的强化学习是指在多智能体环境中进行学习,多个智能体之间相互竞争或合作,每个智能体的奖励取决于所有智能体的行为。在这种环境中,智能体需要通过与其他智能体的交互来学习最优策略。这种学习方式对每个智能体的决策都可能对其他智能体的决策产生影响,因此需要考虑其他智能体的行为和策略。

在军事环境下的强化学习中,智能体之间的竞争和合作关系会对最终的策略产生影响。智能体需要在竞争中寻求个体利益的最大化,在合作中寻求团队利益的最大化。因此,对于军事环境下的强化学习算法来说,需要考虑智能体之间的互动和博弈策略的制定。

概况来说,博弈环境下的强化学习与传统的强化学习相比,更加复杂和动态,需要考虑多个智能体之间的竞争和合作关系。针对博弈环境的学习算法需要特别设计,以适应多智能体的交互和决策过程。

三、军事智能中的深度强化学习不同于传统的深度强化学习

军事环境下的深度强化学习常常是指在多智能体的博弈环境中应用深度强化学习算法来训练智能体。与传统的深度强化学习相比,军事环境下的深度强化学习具有以下不同之处:

1、多智能体

在军事环境中,存在多个智能体相互作用和竞争。这与传统的单智能体环境下的深度强化学习不同,需要考虑其他智能体的行为对自身的影响,并制定相应的博弈策略。

2、竞争与合作

在军事环境中,智能体之间可以进行竞争或合作。智能体的目标可能是在与其他智能体的竞争中取得最大的收益,也可能是通过合作获得更好的结果。因此,博弈环境下的深度强化学习需要考虑如何平衡竞争与合作的关系。

3、对手建模

在军事环境中,智能体需要对其他智能体进行建模,以评估其行为和选择最佳策略。对手建模是博弈环境下深度强化学习的重要问题之一,需要通过观察对手的行为和状态来进行学习和预测。

4、策略的动态变化

在军事环境中,智能体的对策可能会随着时间的推移而发生变化。由于其他智能体的行为是不确定的,智能体需要实时地调整自己的策略来适应环境的变化。因此,博弈环境下的深度强化学习需要具备弹性和适应性。

总而言之,博弈环境下的深度强化学习相对于传统的深度强化学习更复杂,需要考虑多智能体、竞争与合作、对手建模以及策略的动态变化等因素。这些差异使得博弈环境下的深度强化学习具有更高的挑战性和应用价值。举一个简单的例子来说:假设有两个智能体A和B,它们在一个双人博弈游戏环境中进行对抗性训练,目标是使自己的得分最大化。

传统的深度强化学习方法中,智能体A只需要考虑当前状态下采取的最优行动,而不需要考虑其他智能体的行动。例如,智能体A可以使用深度Q网络来选择最佳行动,并通过反馈的奖励信号来训练网络。在这种情况下,智能体B的行动对智能体A的行为没有直接的影响。

然而,在军事环境下的深度强化学习中,智能体A的决策将受到智能体B的行动的影响。例如,智能体A可能会考虑智能体B选择的行动来调整自己的策略。这可以通过将智能体A的深度Q网络扩展为一个博弈论模型来实现,该模型可以预测智能体B的行动,并根据预测结果来选择最佳行动。

在这种情况下,智能体A和B之间存在一种竞争关系,它们的行动会相互影响,并且智能体A需要根据智能体B的行动来调整自己的策略。因此,在博弈环境下的深度强化学习需要考虑其他智能体的行动,并将其纳入决策过程中,以最大化自己的收益。

总而言之,在军事智能的深度强化学习中,诡变和欺诈是一种常见的策略,其中智能体试图通过欺骗对手或诱导其做出错误决策来获取更大的奖励。例如,考虑一个两人对弈的棋类游戏,如国际象棋。假设智能体正在训练过程中学习如何下棋,并且与一个对手进行对抗。在这个环境中,智能体可能会采用诡变和欺诈的策略来获得优势。例如,智能体可以故意制造一种局面,使得对手容易犯错或做出不利的决策。具体来说,智能体可能会伪装自己的棋局,使对手认为自己有一个有利的局势,这会导致对手犯错误。智能体可以通过选择看似有利但实际上是有风险的走法来达到这个目的。此外,智能体还可以采用诡计来迷惑对手的决策过程。如智能体可以选择一个看似有利的走法,但实际上是一个陷阱,以引诱对手做出不利的反应。智能体可以通过学习和实时反馈来改进其诡变和欺诈的策略,以最大程度地获取更高的奖励。需要注意的是,这种诡变和欺诈的策略并不总是成功的,因为对手也可能会学习并适应智能体的行为。因此,深度强化学习在博弈环境中的应用需要平衡这些策略的使用,同时考虑对手的反应和优化自身的决策过程。

c941e5ca03c141fbc78c950366b77eca.jpeg

975c39936f29aede3e12323045ec0e25.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/332512.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

单表查询练习

目录 题目: 制定约束: 添加表格信息: 所需查询的信息: 实验步骤: 第一步:制作表格 创建新的数据库 创建表格约束: 为表格加入数据: 第二步:查询信息 题目&…

C#,入门教程(21)——命名空间(namespace)与程序结构的基础知识

上一篇: C#,入门教程(20)——列表(List)的基础知识https://blog.csdn.net/beijinghorn/article/details/124094382 编写软件(大软件称为系统)与盖大楼一个道理。 假设咱们现在需要盖一座名为“天梯大厦”的…

STM32-调用 vTaskStartScheduler API 后出现 HardFault

STM32 移植 FreeRTOS 后调用 vTaskStartScheduler() 后出现 HardFault 异常。 原因分析: FreeRTOS 配置头文件 FreeRTOSConfig.h 中与中断有关的配置和通过系统接口 void NVIC_PriorityGroupConfig(uint32_t NVIC_PriorityGroup) 设置的中断分组冲突。 /* The lo…

含并行连结的网络(GoogLeNet)

目录 1.GoogLeNet 2.代码 1.GoogLeNet inception不改变高宽,只改变通道数。GoogLeNet也大量使用1*1卷积,把它当作全连接用。 V3耗内存比较多,计算比较慢,但是精度比较准确。 2.代码 import torch from torch import nn from t…

Nacos 极简入门

1. 概述 Nacos 是什么?其官方文档自我介绍如下: FROM 什么是 Nacos Nacos 致力于帮助您发现、配置和管理微服务。Nacos 提供了一组简单易用的特性集,帮助您快速实现动态服务发现、服务配置、服务元数据及流量管理。 Nacos 帮助您更敏捷和容易…

网易云音乐 API

网易云音乐 API 网易云音乐 API灵感来自环境要求安装运行Vercel 部署操作方法 可以在Node.js调用支持 TypeScript使用文档功能特性更新日志单元测试SDK贡献者License 网易云音乐 API 网易云音乐 Node.js API service 灵感来自 disoul/electron-cloud-music darknessomi/musi…

DDoS攻击规模最大的一次

有史以来DDoS攻击规模最大的是哪一次? Google Cloud团队在2017年9月披露了一次此前未公开的DDoS攻击,其流量达 2.54Tbps,是迄今为止有记录以来最大的DDoS攻击。 在同时发布的另一份报告中,分析高端威胁团体的谷歌安全团队谷歌威胁…

[笔记]深度学习入门 基于Python的理论与实现(四)

4. 神经网络的学习 这里说的‘学习’就是指从训练数据中自动获取最优权重参数的过程。为了进行学习,将导入损失函数这一指标。而学习的目的就是以该损失函数为基准,找出能使它的值达到最小的权重参数。为此,我们介绍利用了函数斜率的梯度法。…

RK3568 android11 移植 v4l2loopback 虚拟摄像头

一,v4l2loopback 简介 v4l2loopback是一个Linux内核模块,它允许用户创建虚拟视频设备。这种虚拟视频设备可以用于各种用途,例如将实际摄像头的视频流复制到虚拟设备上,或者用于视频流的处理和分析等。v4l2loopback的主要作用是创…

大语言模型漏洞缓解指南

虽然大语言模型(LLM)应用正在全球快速普及,但企业对大语言模型的威胁态势仍然缺乏全面了解。面对大语言模型风险的不确定性,企业希望在保障其安全性的基础上加快应用脚步,用人工智能提升企业核心竞争力,这意味着企业的CISO面临着理…

Vray渲染效果图材质参数设置

渲染是创造出引人入胜视觉效果的关键步骤,在视觉艺术领域尤为重要。不过,渲染作为一个资源密集型的过程,每当面对它时,我们往往都会遭遇到时间消耗和资源利用的巨大挑战。幸运的是,有几种方法能够帮助我们优化渲染&…

vue列表飞入效果

效果 实现代码 <template><div><button click"add">添加</button><TransitionGroup name"list" tag"ul"><div class"list-item" v-for"item in items" :key"item.id">{{ i…

恒创科技:云存储和网盘怎么区分出来?

随着互联网的发展&#xff0c;数据存储已成为人们日常生活中不可或缺的一部分。云存储和网盘是经常被人们提及的两种存储方式&#xff0c;均通过网络进行数据存储和访问的服务。但&#xff0c;它们在技术实现、数据安全性、访问方式和数据容量等方面存在一定的差异。要区分&…

数据库表合并场景实践

在实际场景中&#xff0c;我们见的比较多的是表拆分&#xff0c;正好遇到一个需要表合并的需求&#xff0c;下面来分析分析 背景 目前是线上有若干张表&#xff1a;a1 a2、b1 b2、c1 c2...&#xff0c;目前需要将这些表进行合并[将b1 c1等表数据都合并到a1&#xff0c;将b2 c2…

【机器学习】四大类监督学习_模型选择与模型原理和场景应用_第03课

监督学习中模型选择原理及场景应用 监督学习应用场景 文本分类场景&#xff1a; o 邮件过滤&#xff1a;训练模型识别垃圾邮件和非垃圾邮件。 o 情感分析&#xff1a;根据评论或社交媒体内容的情感倾向将其分类为正面、负面或中性评价。 o 新闻分类&#xff1a;将新闻文章自动…

中国联通助力吴江元荡生态岸线打造5G+自动驾驶生态长廊

吴江&#xff0c;素有“鱼米之乡”“丝绸之府”的美誉&#xff0c;其地理位置优越&#xff0c;地处太湖之滨。近年来&#xff0c;随着长三角生态绿色一体化发展示范区&#xff08;以下简称“示范区”&#xff09;的建立&#xff0c;元荡更是声名大噪&#xff0c;成为众多游客心…

PyTorch各种损失函数解析:深度学习模型优化的关键(1)

目录 详解pytorch中各种Loss functions binary_cross_entropy 用途 用法 参数 数学理论 示例代码 binary_cross_entropy_with_logits 用途 用法 参数 数学理论 示例代码 poisson_nll_loss 用途 用法 参数 数学理论 示例代码 cosine_embedding_loss 用途 …

mac PyCharm 使用conda环境

1 使用conda创建虚拟环境 conda create -n test6 python3.9 -y conda activate test62 选择conda环境 本地 选择已经存在的conda环境 右下角会显示现在的环境。

adb、monkey的下载和安装

adb下载 官网网址&#xff1a;Downloads - ADB Shell 尽量不要下载最新的ADB Kits&#xff0c;因为兼容性可能不太好。 点击下载 ADB Kits 作者下载的版本是1.0.36 解压adb 到指定的目录即可。 然后把adb配置 环境变量。 检查adb是否安装成功

骑砍2霸主MOD开发-作弊模式控制台模式

一.作弊模式开启 config文件路径:C:\Users\Administrator\Documents\Mount and Blade II Bannerlord\Configs\engine_config.txt 修改配置项:cheat_mode 0 → cheat_mode 1 启动游戏后,作弊按键: Ctrl Left Click—传送地图的任意点。Ctrl H—主角满血。CTRL Shift H—主角全…