大语言模型漏洞缓解指南

虽然大语言模型(LLM)应用正在全球快速普及,但企业对大语言模型的威胁态势仍然缺乏全面了解。面对大语言模型风险的不确定性,企业希望在保障其安全性的基础上加快应用脚步,用人工智能提升企业核心竞争力,这意味着企业的CISO面临着理解和应对新兴人工智能威胁的巨大压力。

虽然大语言模型(LLM)应用正在全球快速普及,但企业对大语言模型的威胁态势仍然缺乏全面了解。面对大语言模型风险的不确定性,企业希望在保障其安全性的基础上加快

应用脚步,用人工智能提升企业核心竞争力,这意味着企业的CISO面临着理解和应对新兴人工智能威胁的巨大压力。

人工智能威胁态势每天都在变化,企业安全团队应当优先关注和处理那些对企业运营构成重大风险的大语言模型漏洞。如果网络安全团队能够深入了解这些漏洞及其缓解措施,企业就可以大胆放手一搏,利用大语言模型加速创新,而无需过度担心风险。

以下,我们将简要介绍四类大语言模型重大风险及其缓解措施:

一、提示注入攻击和数据泄露

对于大语言模型来说,数据泄露是最受关注的重大风险。大语言模型可能会被“诱骗”披露敏感的企业或用户信息,从而导致一系列隐私和安全问题。提示泄漏是另一个大问题,如果恶意用户访问系统提示,公司的知识产权可能会受到损害。

这两个漏洞都与提示注入有关,直接和间接提示注入攻击如今都变得越来越普遍,并且会带来严重的后果。

成功的提示注入攻击可能会导致跨插件请求伪造、跨站点脚本编写和训练数据提取,这些都会使公司机密、个人用户数据和重要训练数据面临风险。

因此,企业需要在整个人工智能应用开发生命周期中实施检查系统。从采购和处理数据到选择和训练应用程序,每一步都应该受到限制,以降低违规风险。与大语言模型打交道时,沙箱、白名单和API网关等常规安全实践同样有价值(如果不是更有价值的话)。除此之外,在将插件与大语言模型应用程序集成之前,安全团队应仔细审查所有插件,并人工审核批准所有高权限任务,这一点至关重要。

二、模型数据中毒攻击

人工智能模型的有效性取决于数据质量。但在整个模型开发过程中——从预训练到微调和嵌入——训练数据集很容易受到黑客的攻击。

大多数企业利用第三方模型,由未知人员管理数据,网络团队不能盲目相信数据没有被篡改。无论使用第三方还是自有模型,总会存在不良行为者带来“数据中毒”的风险,这可能会对模型性能产生重大影响,从而损害品牌声誉。

开源AutoPoison框架(https://github.com/azshue/AutoPoison/blob/main/assets/intro.png)清楚地描述了数据中毒攻击如何在指令调整过程中影响模型。此外,以下是网络安全团队可以实施的一系列风险环节策略,可以以降低风险并最大限度地提高人工智能模型的性能:

供应链审查:通过严密的安全措施审查供应链,以验证数据源是否干净。提出诸如“数据是如何收集的?”之类的问题。以及“是否征得用户同意和并符合道德规则?”此外,还需要询问数据标注者的身份、他们的资格以及标签中是否存在任何偏差或不一致。此外,解决数据所有权和许可问题,包括谁拥有数据以及许可条款和条件。

数据清理和清理:在数据进入模型之前,请务必检查所有数据和来源。例如,PII在放入模型之前必须进行编辑。

红队演习:在模型生命周期的测试阶段进行以大语言模型为重点的红队演习。具体包括:优先考虑涉及操纵训练数据以注入恶意代码、偏见或有害内容的测试场景,并采用各种攻击方法,包括对抗性输入、中毒攻击和模型提取技术。

三、互联系统的API风险

GPT-4等高级模型经常会被集成到与其他应用程序通信的系统中。但只要涉及API,下游系统就会面临风险,一个恶意提示就可能会对互连系统产生多米诺骨牌效应。为了降低这种风险,请考虑以下事项:

如果允许大语言模型调用外部API,请在执行潜在破坏性操作之前请求用户确认。

在不同系统互连之前审查大语言模型输出。检查它们是否存在可能导致远程代码执行(RCE)等风险的潜在漏洞。

请特别注意这些输出促进不同计算机系统之间交互的场景。

为互连系统中涉及的所有API实施强大的安全措施。

使用强大的身份验证和授权协议来防止未经授权的访问和数据泄露。

监控API活动是否存在异常和可疑行为迹象,例如异常请求模式或尝试利用漏洞。

四、大模型DoS攻击

网络带宽饱和漏洞可能被攻击者利用实施拒绝服务(DoS)攻击,可导致大语言模型使用成本飙升。

在模型拒绝服务攻击中,攻击者以过度消耗资源(例如带宽或系统处理能力)的方式使用模型,最终损害目标系统的可用性。反过来,此类攻击可导致大模型服务质量下降和天价账单。由于DoS攻击对于网络安全领域来说并不新鲜,因此可以采用多种策略来防御模型拒绝服务攻击并降低成本快速上升的风险:

速率限制:实施速率限制以防止系统因过多请求而不堪重负。确定应用程序的正确速率限制取决于模型大小和复杂性、硬件和基础设施以及平均请求数和峰值使用时间。

字符限制:对用户可以在查询中包含的字符数设置限制,以米便大模型的API资源耗尽。

框架提供商的方法:利用框架提供商提供的方法来加强对攻击的防御。例如,如果您使用LangChain,请考虑使用max_iterations参数。

保护大语言模型需要采取多种方法,涵盖数据处理、模型训练、系统集成和资源使用。通过实施以上建议策略并保持警惕,企业无需因噎废食,在充分利用大语言模型能力的同时,最大限度地降低相关风险。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/332499.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Vray渲染效果图材质参数设置

渲染是创造出引人入胜视觉效果的关键步骤,在视觉艺术领域尤为重要。不过,渲染作为一个资源密集型的过程,每当面对它时,我们往往都会遭遇到时间消耗和资源利用的巨大挑战。幸运的是,有几种方法能够帮助我们优化渲染&…

vue列表飞入效果

效果 实现代码 <template><div><button click"add">添加</button><TransitionGroup name"list" tag"ul"><div class"list-item" v-for"item in items" :key"item.id">{{ i…

恒创科技:云存储和网盘怎么区分出来?

随着互联网的发展&#xff0c;数据存储已成为人们日常生活中不可或缺的一部分。云存储和网盘是经常被人们提及的两种存储方式&#xff0c;均通过网络进行数据存储和访问的服务。但&#xff0c;它们在技术实现、数据安全性、访问方式和数据容量等方面存在一定的差异。要区分&…

数据库表合并场景实践

在实际场景中&#xff0c;我们见的比较多的是表拆分&#xff0c;正好遇到一个需要表合并的需求&#xff0c;下面来分析分析 背景 目前是线上有若干张表&#xff1a;a1 a2、b1 b2、c1 c2...&#xff0c;目前需要将这些表进行合并[将b1 c1等表数据都合并到a1&#xff0c;将b2 c2…

【机器学习】四大类监督学习_模型选择与模型原理和场景应用_第03课

监督学习中模型选择原理及场景应用 监督学习应用场景 文本分类场景&#xff1a; o 邮件过滤&#xff1a;训练模型识别垃圾邮件和非垃圾邮件。 o 情感分析&#xff1a;根据评论或社交媒体内容的情感倾向将其分类为正面、负面或中性评价。 o 新闻分类&#xff1a;将新闻文章自动…

中国联通助力吴江元荡生态岸线打造5G+自动驾驶生态长廊

吴江&#xff0c;素有“鱼米之乡”“丝绸之府”的美誉&#xff0c;其地理位置优越&#xff0c;地处太湖之滨。近年来&#xff0c;随着长三角生态绿色一体化发展示范区&#xff08;以下简称“示范区”&#xff09;的建立&#xff0c;元荡更是声名大噪&#xff0c;成为众多游客心…

PyTorch各种损失函数解析:深度学习模型优化的关键(1)

目录 详解pytorch中各种Loss functions binary_cross_entropy 用途 用法 参数 数学理论 示例代码 binary_cross_entropy_with_logits 用途 用法 参数 数学理论 示例代码 poisson_nll_loss 用途 用法 参数 数学理论 示例代码 cosine_embedding_loss 用途 …

mac PyCharm 使用conda环境

1 使用conda创建虚拟环境 conda create -n test6 python3.9 -y conda activate test62 选择conda环境 本地 选择已经存在的conda环境 右下角会显示现在的环境。

adb、monkey的下载和安装

adb下载 官网网址&#xff1a;Downloads - ADB Shell 尽量不要下载最新的ADB Kits&#xff0c;因为兼容性可能不太好。 点击下载 ADB Kits 作者下载的版本是1.0.36 解压adb 到指定的目录即可。 然后把adb配置 环境变量。 检查adb是否安装成功

骑砍2霸主MOD开发-作弊模式控制台模式

一.作弊模式开启 config文件路径:C:\Users\Administrator\Documents\Mount and Blade II Bannerlord\Configs\engine_config.txt 修改配置项:cheat_mode 0 → cheat_mode 1 启动游戏后,作弊按键: Ctrl Left Click—传送地图的任意点。Ctrl H—主角满血。CTRL Shift H—主角全…

C语言中的字符串操作函数自定义实现:标准版与限定长度版

目录 1. 标准字符串操作函数自定义实现 (a) 自定义strcpy函数 (b) 自定义strcat函数 (c) 自定义strcmp函数 2. 限定长度字符串操作函数自定义实现 (a) 自定义strncpy函数 (b) 自定义strncat函数 (c) 自定义strncmp函数 对字符串的操作是不可或缺的一部分。标准库提供了…

【.NET Core】 多线程之(Thread)详解

【.NET Core】 多线程之&#xff08;Thread&#xff09;详解 文章目录 【.NET Core】 多线程之&#xff08;Thread&#xff09;详解一、概述二、线程的创建和使用2.1 ThreadStart用于无返回值&#xff0c;无参数的方法2.2 ParameterizedThreadStart:用于带参数的方法 三、线程的…

REVIT二次开发生成三维轴网

步骤1 确定轴网 步骤2 生成3D轴网 using System; using System.Collections.Generic; using System.Linq; using System.Text;

C#winform上位机开发学习笔记2-串口助手的中文支持功能添加

分为两步&#xff1a; 1.串口接收支持中文显示 1.1.在软件初始化时写入此代码以支持汉字显示 //串口接收支持中文显示serialPort1.Encoding Encoding.GetEncoding("GB2312"); //串口1的解码支持GB2312汉字 2.串口发送支持中文输出 //支持中文输出Encoding Chine…

文心一言使用分享

ChatGPT 和文心一言哪个更好用&#xff1f; 一个直接可以用&#xff0c;一个还需要借助一些工具&#xff0c;还有可能账号会消失…… 没有可比性。 通用大模型用于特定功能的时候需要一些引导技巧。 import math import time def calculate_coordinate(c, d, e, f, g, h,…

【Origin绘图系列第3棒】箱型图:

Origin绘制箱型图 箱型图&#xff08;Boxplots&#xff09;案例1&#xff1a;基本绘制参考 箱型图&#xff08;Boxplots&#xff09; 案例1&#xff1a;基本绘制 选择箱型图后界面如下&#xff1a; 设置分组&#xff0c;如下设置&#xff0c; 图形如下所示&#xff1a; 根…

防火墙部署安全区域实验

目录 实验拓扑web登防火墙配置对象配置安全策略配置NAT配置安全策略测试抓包测试 实验拓扑 安全区域如下图&#xff1a; web登防火墙 按接口划分各区域&#xff0c;GE1/0/1为trust区域&#xff0c;内网是信任区域。 配置如下&#xff0c;可起别名方便操作&#xff0c;区域为t…

C++后端笔记

C后端笔记 资源整理一、高级语言程序设计1.1 进制1.2 程序结构基本知识1.3 数据类型ASCII码命名规则变量间的赋值浮点型变量的作用字符变量常变量 const运算符 二、高级语言程序设计&#xff08;荣&#xff09; 资源整理 C后端开发学习路线及推荐学习时间 C基础知识大全 C那…

ICCV2023 | PTUnifier+:通过Soft Prompts(软提示)统一医学视觉语言预训练

论文标题&#xff1a;Towards Unifying Medical Vision-and-Language Pre-training via Soft Prompts 代码&#xff1a;https://github.com/zhjohnchan/ptunifier Fusion-encoder type和Dual-encoder type。前者在多模态任务中具有优势&#xff0c;因为模态之间有充分的相互…

Docker部署Flask项目

Docker部署Flask项目 一、准备项目代码二、编写Dockerfile三、服务器部署 一、准备项目代码 这里写了一个简单的Flask的demo&#xff0c;源代码如下&#xff1a; from flask import Flaskapp Flask(__name__)app.route("/") def index():return "<h1 styl…