【RT-DETR有效改进】轻量级网络ShuffleNetV2(附代码+修改教程)

前言

大家好,这里是RT-DETR有效涨点专栏

本专栏的内容为根据ultralytics版本的RT-DETR进行改进,内容持续更新,每周更新文章数量3-10篇。

专栏以ResNet18、ResNet50为基础修改版本,同时修改内容也支持ResNet32、ResNet101和PPHGNet版本,其中ResNet为RT-DETR官方版本1:1移植过来的,参数量基本保持一致(误差很小很小),不同于ultralytics仓库版本的ResNet官方版本,同时ultralytics仓库的一些参数是和RT-DETR相冲的所以我也是会教大家调好一些参数和代码,真正意义上的跑ultralytics的和RT-DETR官方版本的无区别。

👑欢迎大家订阅本专栏,一起学习RT-DETR👑   

一、本文内容

本文给大家带来的改进内容是ShuffleNetV2,这是一种为移动设备设计的高效CNN架构。其在ShuffleNetV1的基础上强调除了FLOPs之外,还应考虑速度、内存访问成本和平台特性。(我在RT-DETR上修改该主干降低了GFLOPs,但是参数量还是有一定上涨,其非常适合轻量化的读者来使用,同时精度也有一定程度的上涨)。本文通过介绍其主要框架原理,然后教你如何添加该网络结构到网络模型中。

专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR  

目录

 一、本文内容

二、ShuffleNetV2框架原理

三、ShuffleNetV2核心代码

 四、手把手教你添加ShuffleNetV2网络结构

修改一

修改二

修改三 

修改四

修改五 

修改六 

修改七

修改八

五、ShuffleNetV2的yaml文件

六、成功运行记录 

七、本文总结


二、ShuffleNetV2框架原理

官方论文地址:官方论文地址

官方代码地址:官方代码地址


ShuffleNet的创新机制为点群卷积和通道混:使用了新的操作点群卷积(pointwise group convolution)和通道混洗(channel shuffle),以减少计算成本,同时保持网络精度

您上传的图片展示的是ShuffleNet架构中的通道混洗机制。这一机制通过两个堆叠的分组卷积(GConv)来实现:

图示(a):展示了两个具有相同分组数量的堆叠卷积层。每个输出通道仅与同一组内的输入通道相关联。
图示(b):
在不使用通道混洗的情况下,展示了在GConv1之后,GConv2从不同分组获取数据时输入和输出通道是如何完全相关联的。
图示(c:提供了与(b)相同的实现,但使用了通道混洗来允许跨组通信,从而使网络内更有效和强大的特征学习成为可能。

上面的图片描述了ShuffleNet架构中的ShuffleNet单元。这些单元是网络中的基本构建块,具体包括:

图示(a):一个基本的瓶颈单元,使用了深度可分离卷积(DWConv)和一个简单的加法(Add)来融合特征。
图示(b):在标准瓶颈单元的基础上,引入了点群卷积(GConv)和通道混洗操作,以增强特征的表达能力。
图示(c):适用于空间下采样的ShuffleNet单元,使用步长为2的平均池化(AVG Pool)和深度可分离卷积,再通过通道混洗和点群卷积进一步处理特征,最后通过连接操作(Concat)合并特征。


三、ShuffleNetV2核心代码

下面的代码是整个ShuffleNetV1的核心代码,其中有个版本,对应的GFLOPs也不相同,使用方式看章节四。

# Copyright 2022 Dakewe Biotech Corporation. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from typing import Any, List, Optional

import torch
from torch import Tensor
from torch import nn

__all__ = [
    "ShuffleNetV1",
    "shufflenet_v1_x0_5", "shufflenet_v1_x1_0", "shufflenet_v1_x1_5", "shufflenet_v1_x2_0",
]


class ShuffleNetV1(nn.Module):

    def __init__(
            self,
            repeats_times: List[int],
            stages_out_channels: List[int],
            groups: int = 8,
            num_classes: int = 1000,
    ) -> None:
        super(ShuffleNetV1, self).__init__()
        in_channels = stages_out_channels[0]

        self.first_conv = nn.Sequential(
            nn.Conv2d(3, in_channels, (3, 3), (2, 2), (1, 1), bias=False),
            nn.BatchNorm2d(in_channels),
            nn.ReLU(True),
        )
        self.maxpool = nn.MaxPool2d((3, 3), (2, 2), (1, 1))

        features = []
        for state_repeats_times_index in range(len(repeats_times)):
            out_channels = stages_out_channels[state_repeats_times_index + 1]

            for i in range(repeats_times[state_repeats_times_index]):
                stride = 2 if i == 0 else 1
                first_group = state_repeats_times_index == 0 and i == 0
                features.append(
                    ShuffleNetV1Unit(
                        in_channels,
                        out_channels,
                        stride,
                        groups,
                        first_group,
                    )
                )
                in_channels = out_channels
        self.features = nn.Sequential(*features)

        self.globalpool = nn.AvgPool2d((7, 7))

        self.classifier = nn.Sequential(
            nn.Linear(stages_out_channels[-1], num_classes, bias=False),
        )

        # Initialize neural network weights
        self._initialize_weights()
        self.index = stages_out_channels[-4:]
        self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]

    def forward(self, x: Tensor) -> list[Optional[Any]]:
        out = self.first_conv(x)
        out = self.maxpool(out)
        results = [None, None, None, None]
        for model in self.features:
            out = model(out)
            # results.append(out)
            if out.size(1) in self.index:
                position = self.index.index(out.size(1))  # Find the position in the index list
                results[position] = out

        return results

    def _initialize_weights(self) -> None:
        for name, module in self.named_modules():
            if isinstance(module, nn.Conv2d):
                if 'first' in name:
                    nn.init.normal_(module.weight, 0, 0.01)
                else:
                    nn.init.normal_(module.weight, 0, 1.0 / module.weight.shape[1])
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)
            elif isinstance(module, nn.BatchNorm2d):
                nn.init.constant_(module.weight, 1)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0.0001)
                nn.init.constant_(module.running_mean, 0)
            elif isinstance(module, nn.BatchNorm1d):
                nn.init.constant_(module.weight, 1)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0.0001)
                nn.init.constant_(module.running_mean, 0)
            elif isinstance(module, nn.Linear):
                nn.init.normal_(module.weight, 0, 0.01)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)


class ShuffleNetV1Unit(nn.Module):
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            stride: int,
            groups: int,
            first_groups: bool = False,
    ) -> None:
        super(ShuffleNetV1Unit, self).__init__()
        self.stride = stride
        self.groups = groups
        self.first_groups = first_groups
        hidden_channels = out_channels // 4

        if stride == 2:
            out_channels -= in_channels
            self.branch_proj = nn.AvgPool2d((3, 3), (2, 2), (1, 1))

        self.branch_main_1 = nn.Sequential(
            # pw
            nn.Conv2d(in_channels, hidden_channels, (1, 1), (1, 1), (0, 0), groups=1 if first_groups else groups,
                      bias=False),
            nn.BatchNorm2d(hidden_channels),
            nn.ReLU(True),
            # dw
            nn.Conv2d(hidden_channels, hidden_channels, (3, 3), (stride, stride), (1, 1), groups=hidden_channels,
                      bias=False),
            nn.BatchNorm2d(hidden_channels),
        )
        self.branch_main_2 = nn.Sequential(
            # pw-linear
            nn.Conv2d(hidden_channels, out_channels, (1, 1), (1, 1), (0, 0), groups=groups, bias=False),
            nn.BatchNorm2d(out_channels),
        )

        self.relu = nn.ReLU(True)

    def channel_shuffle(self, x):
        batch_size, channels, height, width = x.data.size()
        assert channels % self.groups == 0
        group_channels = channels // self.groups

        out = x.reshape(batch_size, group_channels, self.groups, height, width)
        out = out.permute(0, 2, 1, 3, 4)
        out = out.reshape(batch_size, channels, height, width)

        return out

    def forward(self, x: Tensor) -> Tensor:
        identify = x

        out = self.branch_main_1(x)
        out = self.channel_shuffle(out)
        out = self.branch_main_2(out)

        if self.stride == 2:
            branch_proj = self.branch_proj(x)
            out = self.relu(out)
            out = torch.cat([branch_proj, out], 1)
            return out
        else:
            out = torch.add(out, identify)
            out = self.relu(out)
            return out


def shufflenet_v1_x0_5(**kwargs: Any) -> ShuffleNetV1:
    model = ShuffleNetV1([4, 4, 8, 4], [16, 96, 192, 384, 768], 8, **kwargs)

    return model


def shufflenet_v1_x1_0(**kwargs: Any) -> ShuffleNetV1:
    model = ShuffleNetV1([4, 4, 8, 4], [24, 192, 384, 768, 1536], 8, **kwargs)

    return model


def shufflenet_v1_x1_5(**kwargs: Any) -> ShuffleNetV1:
    model = ShuffleNetV1([4, 4, 8, 4], [24, 288, 576, 1152, 2304], 8, **kwargs)

    return model


def shufflenet_v1_x2_0(**kwargs: Any) -> ShuffleNetV1:
    model = ShuffleNetV1([4, 4, 8, 4], [48, 384, 768, 1536, 3072], 8, **kwargs)

    return model


if __name__ == "__main__":

    # Generating Sample image
    image_size = (1, 3, 640, 640)
    image = torch.rand(*image_size)

    # Model
    model = shufflenet_v1_x0_5()

    out = model(image)
    print(out)

四、手把手教你添加ShuffleNetV2网络结构

 下面教大家如何修改该网络结构,主干网络结构的修改步骤比较复杂,我也会将task.py文件上传到CSDN的文件中,大家如果自己修改不正确,可以尝试用我的task.py文件替换你的,然后只需要修改其中的第1、2、3、5步即可。

⭐修改过程中大家一定要仔细⭐


4.1 修改一

首先我门中到如下“ultralytics/nn”的目录,我们在这个目录下在创建一个新的目录,名字为'Addmodules'(此文件之后就用于存放我们的所有改进机制),之后我们在创建的目录内创建一个新的py文件复制粘贴进去 ,可以根据文章改进机制来起,这里大家根据自己的习惯命名即可。


4.2 修改二 

第二步我们在我们创建的目录内创建一个新的py文件名字为'__init__.py'(只需要创建一个即可),然后在其内部导入我们本文的改进机制即可,其余代码均为未发大家没有不用理会!


4.3 修改三 

第三步我门中到如下文件'ultralytics/nn/tasks.py'然后在开头导入我们的所有改进机制(如果你用了我多个改进机制,这一步只需要修改一次即可)


4.4 修改四

添加如下两行代码!!!


4.5 修改五

找到七百多行大概把具体看图片,按照图片来修改就行,添加红框内的部分,注意没有()只是函数名(此处我的文件里已经添加很多了后期都会发出来,大家没有的不用理会即可)。

        elif m in {自行添加对应的模型即可,下面都是一样的}:
            m = m(*args)
            c2 = m.width_list  # 返回通道列表
            backbone = True


4.6 修改六

用下面的代码替换红框内的内容。 

if isinstance(c2, list):
    m_ = m
    m_.backbone = True
else:
    m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
    t = str(m)[8:-2].replace('__main__.', '')  # module type
m.np = sum(x.numel() for x in m_.parameters())  # number params
m_.i, m_.f, m_.type = i + 4 if backbone else i, f, t  # attach index, 'from' index, type
if verbose:
    LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}')  # print
save.extend(
    x % (i + 4 if backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
layers.append(m_)
if i == 0:
    ch = []
if isinstance(c2, list):
    ch.extend(c2)
    if len(c2) != 5:
        ch.insert(0, 0)
else:
    ch.append(c2)


4.7 修改七 

修改七这里非常要注意,不是文件开头YOLOv8的那predict,是400+行的RTDETR的predict!!!初始模型如下,用我给的代码替换即可!!!

代码如下->

 def predict(self, x, profile=False, visualize=False, batch=None, augment=False, embed=None):
        """
        Perform a forward pass through the model.

        Args:
            x (torch.Tensor): The input tensor.
            profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.
            visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.
            batch (dict, optional): Ground truth data for evaluation. Defaults to None.
            augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.
            embed (list, optional): A list of feature vectors/embeddings to return.

        Returns:
            (torch.Tensor): Model's output tensor.
        """
        y, dt, embeddings = [], [], []  # outputs
        for m in self.model[:-1]:  # except the head part
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                if len(x) != 5:  # 0 - 5
                    x.insert(0, None)
                for index, i in enumerate(x):
                    if index in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                x = x[-1]  # 最后一个输出传给下一层
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
            if embed and m.i in embed:
                embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flatten
                if m.i == max(embed):
                    return torch.unbind(torch.cat(embeddings, 1), dim=0)
        head = self.model[-1]
        x = head([y[j] for j in head.f], batch)  # head inference
        return x

4.8 修改八

我们将下面的s用640替换即可,这一步也是部分的主干可以不修改,但有的不修改就会报错,所以我们还是修改一下。


4.9 RT-DETR不能打印计算量问题的解决

计算的GFLOPs计算异常不打印,所以需要额外修改一处, 我们找到如下文件'ultralytics/utils/torch_utils.py'文件内有如下的代码按照如下的图片进行修改,大家看好函数就行,其中红框的640可能和你的不一样, 然后用我给的代码替换掉整个代码即可。

def get_flops(model, imgsz=640):
    """Return a YOLO model's FLOPs."""
    try:
        model = de_parallel(model)
        p = next(model.parameters())
        # stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32  # max stride
        stride = 640
        im = torch.empty((1, 3, stride, stride), device=p.device)  # input image in BCHW format
        flops = thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1E9 * 2 if thop else 0  # stride GFLOPs
        imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz]  # expand if int/float
        return flops * imgsz[0] / stride * imgsz[1] / stride  # 640x640 GFLOPs
    except Exception:
        return 0


4.10 可选修改

有些读者的数据集部分图片比较特殊,在验证的时候会导致形状不匹配的报错,如果大家在验证的时候报错形状不匹配的错误可以固定验证集的图片尺寸,方法如下 ->

找到下面这个文件ultralytics/models/yolo/detect/train.py然后其中有一个类是DetectionTrainer class中的build_dataset函数中的一个参数rect=mode == 'val'改为rect=False


五、ShuffleNetV2的yaml文件

5.1 yaml文件

大家复制下面的yaml文件,然后通过我给大家的运行代码运行即可,RT-DETR的调参部分需要后面的文章给大家讲,现在目前免费给大家看这一部分不开放。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, shufflenetv2, []]  # 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 5 input_proj.2
  - [-1, 1, AIFI, [1024, 8]] # 6
  - [-1, 1, Conv, [256, 1, 1]]  # 7, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 8
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 9 input_proj.1
  - [[-2, -1], 1, Concat, [1]] # 10
  - [-1, 3, RepC3, [256, 0.5]]  # 11, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]   # 12, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 13
  - [2, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 14 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 15 cat backbone P4
  - [-1, 3, RepC3, [256, 0.5]]    # X3 (16), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]]   # 17, downsample_convs.0
  - [[-1, 12], 1, Concat, [1]]  # 18 cat Y4
  - [-1, 3, RepC3, [256, 0.5]]    # F4 (19), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]   # 20, downsample_convs.1
  - [[-1, 7], 1, Concat, [1]]  # 21 cat Y5
  - [-1, 3, RepC3, [256, 0.5]]    # F5 (22), pan_blocks.1

  - [[16, 19, 22], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 3]]  # Detect(P3, P4, P5)


5.2 运行文件

大家可以创建一个train.py文件将下面的代码粘贴进去然后替换你的文件运行即可开始训练。

import warnings
from ultralytics import RTDETR
warnings.filterwarnings('ignore')

if __name__ == '__main__':
    model = RTDETR('替换你想要运行的yaml文件')
    # model.load('') # 可以加载你的版本预训练权重
    model.train(data=r'替换你的数据集地址即可',
                cache=False,
                imgsz=640,
                epochs=72,
                batch=4,
                workers=0,
                device='0',
                project='runs/RT-DETR-train',
                name='exp',
                # amp=True
                )


5.3 成功训练截图

下面是成功运行的截图(确保我的改进机制是可用的),已经完成了有1个epochs的训练,图片太大截不全第2个epochs了。 


六、全文总结

从今天开始正式开始更新RT-DETR剑指论文专栏,本专栏的内容会迅速铺开,在短期呢大量更新,价格也会乘阶梯性上涨,所以想要和我一起学习RT-DETR改进,可以在前期直接关注,本文专栏旨在打造全网最好的RT-DETR专栏为想要发论文的家进行服务。

 专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/332426.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

最新ChatGPT/GPT4科研应用与AI绘图及论文高效写作

详情点击链接&#xff1a;最新ChatGPT/GPT4科研应用与AI绘图及论文高效写作 一OpenAI 1.最新大模型GPT-4 Turbo 2.最新发布的高级数据分析&#xff0c;AI画图&#xff0c;图像识别&#xff0c;文档API 3.GPT Store 4.从0到1创建自己的GPT应用 5. 模型Gemini以及大模型Clau…

详细介绍IP 地址、网络号和主机号、ABC三类、ip地址可分配问题、子网掩码、子网划分

1、 IP 地址: 网络之间互连的协议&#xff0c;是由4个字节(32位二进制)组成的逻辑上的地址。 将32位二进制进行分组&#xff0c;分成4组&#xff0c;每组8位(1个字节)。【ip地址通常使用十进制表示】ip地址分成四组之后&#xff0c;在逻辑上&#xff0c;分成网络号和主机号 2…

Educational Codeforces Round 161 (Rated for Div. 2)(A~E)

被教育咯 A - Tricky Template 题意&#xff1a; 思路&#xff1a;读题读了半天..可以发现&#xff0c;若对于第位而言&#xff0c;&#xff0c;那么c就一定与模板匹配。否则模板只需要取大写的即可。因此若所有的 &#xff0c;都有&#xff0c;那么就不能构造&#xff0c;否…

gitgud.io+Sapphire注册账号教程

gitgud.io是一个仓库&#xff0c;地址 https://gitgud.io/&#xff0c;点进去之后会看到注册页面。 意思是需要通过注册这个Sapphire账户来登录。点击右边的Sapphire&#xff0c;就跳转到Sapphire的登陆页面&#xff0c;点击创建新账号&#xff0c;就进入注册页面。&#xff0…

中仕公考:国考进面后资格复审需要准备什么?

参加国考面试的考生在资格审核阶段需要准备以下材料&#xff1a; 1、本人身份证、学生证或工作证复印件。 2、公共科目笔试准考证复印件。 3、考试报名登记表。 4、本(专)科、研究生各阶段学历、学位证书(应届毕业生没有可以暂时不提供)。 5、报名资料上填写的各类证书材料…

【webrtc】GCC 7: call模块创建的ReceiveSideCongestionController

webrtc 代码学习&#xff08;三十二&#xff09; video RTT 作用笔记 从call模块说起 call模块创建的时候&#xff0c;会创建 src\call\call.h 线程&#xff1a; 统计 const std::unique_ptr<CallStats> call_stats_;SendDelayStats &#xff1a; 发送延迟统计 const…

统计学-R语言-6.1

文章目录 前言参数估计的原理总体、样本和统计量点估计区间估计评价估计量的标准有效性 总体均值的区间估计一个总体均值的估计&#xff08;大样本&#xff09;一个总体均值的估计&#xff08;小样本估计&#xff09; 练习 前言 本篇文章将开始介绍参数估计的相关知识。 参数估…

本地安装配置禅道BUG管理系统并结合内网穿透实现公网访问管理界面

文章目录 前言1. 本地安装配置BUG管理系统2. 内网穿透2.1 安装cpolar内网穿透2.2 创建隧道映射本地服务3. 测试公网远程访问4. 配置固定二级子域名4.1 保留一个二级子域名5.1 配置二级子域名6. 使用固定二级子域名远程 正文开始前给大家推荐个网站&#xff0c;前些天发现了一个…

《30天自制操作系统》学习笔记(七)

先体验一下编译仿真方法&#xff1a; 30天自制操作系统光盘代码在下面链接&#xff0c;但是没有编译仿真工具&#xff1a; https://gitee.com/zhanfei3000/30dayMakeOS 仿真工具在下面链接&#xff1a; https://gitee.com/909854136/nask-code-ide 这是一个集成的编译仿真工…

Docker五部曲之五:通过Docker和GitHub Action搭建个人CICD项目

文章目录 项目介绍Dockerfile解析compose.yml解析MySQL的准备工作Spring和环境变量的交互 GitHub Action解析项目测试结语 项目介绍 该项目是一个入门CICD-Demo&#xff0c;它由以下几部分组成&#xff1a; Dockerfile&#xff1a;用于构建自定义镜像compose.yml&#xff1a;…

开源免费的可私有化部署的白板excalidraw 详细部署教程

简介 excalidraw 是一款开源免费的虚拟白板&#xff0c;提供一个在线的实时协作白板工具&#xff0c;使用户能够创建简单的图形和图示。 excalidraw 的设计目标是提供一个易于使用的绘图工具&#xff0c;支持团队协作&#xff0c;同时具有跨平台和实时协作的功能。 简单易用&…

DAY04_Spring—Aop案例引入代理机制

目录 1 AOP1.1 AOP案例引入1.1.1 数据库事务说明 1.2 Spring实现事务控制1.2.1 代码结构如下1.2.2 编辑User1.2.3 编辑UserMapper/UserMapperImpl1.2.4 编辑UserService/UserServiceImpl1.2.5 编辑配置类1.2.6 编辑测试类 1.3 代码问题分析1.4 代理模式1.4.1 生活中代理案例1.4…

Gitlab添加ssh-key报500错误处理

Gitlab添加ssh-key报500错误 一、查看日志 发现Errno::Enoent(No such file or derectory -ssh): rootasu1:/home/caixin# tail -f /var/log/gitlab/gitlab-rails/production.log二、分析 根据日志提示&#xff0c;好像是缺少文件或目录&#xff0c;后面有个ssh,难首是依赖s…

【python】—— 字典

目录 &#xff08;一&#xff09;什么是字典 &#xff08;二&#xff09;字典的基本操作 2.1 创建字典 2.2 查找 key 2.3 新增/修改元素 2.4 删除元素 2.5 遍历字典元素 2.6 取出所有 key 和 value &#xff08;三&#xff09;合法的 key 类型 &#xff08;四&#xff09…

VUE组件--动态组件、组件保持存活、异步组件

动态组件 有些场景可能会需要在多个组件之间进行来回切换&#xff0c;在vue中则使用<component :is"..."> 来实现组件间的来回切换 // App.vue <template><component :is"tabComponent"></component><button click"change…

登陆提示:不支持你所在的地区,“Openai’s services are not available in your country…”

错误 登陆时提示“openai’s services are not available in your country”&#xff0c; 说明&#xff1a;Openai的服务在你的地区不可用解决&#xff1a;先清理下浏览器缓存&#xff0c;然后更换代理节点&#xff0c;开启全局模式&#xff0c;最好用欧美节点&#xff0c;或…

hyperf 二十一 数据库 模型关系

教程&#xff1a;Hyperf 一 定义关联 根据文档 一对一&#xff1a;Model::hasOne(被关联模型&#xff0c;被关联模型外键&#xff0c;本模型被关联的字段)一对多&#xff1a;Model::hasMany(被关联模型&#xff0c;被关联模型外键&#xff0c;本模型被关联的字段)反向一对多…

Docker 安装 PHP

Docker 安装 PHP 安装 PHP 镜像 方法一、docker pull php 查找 Docker Hub 上的 php 镜像: 可以通过 Sort by 查看其他版本的 php&#xff0c;默认是最新版本 php:latest。 此外&#xff0c;我们还可以用 docker search php 命令来查看可用版本&#xff1a; runoobrunoob:…

【51单片机】数码管的静态与动态显示(含消影)

数码管在现实生活里是非常常见的设备&#xff0c;例如 这些数字的显示都是数码管的应用。 目录 静态数码管&#xff1a;器件介绍&#xff1a;数码管的使用&#xff1a;译码器的使用&#xff1a;缓冲器&#xff1a; 实现原理&#xff1a;完整代码&#xff1a; 动态数码管&#…

python222网站实战(SpringBoot+SpringSecurity+MybatisPlus+thymeleaf+layui)-热门帖子推荐显示实现

锋哥原创的SpringbootLayui python222网站实战&#xff1a; python222网站实战课程视频教程&#xff08;SpringBootPython爬虫实战&#xff09; ( 火爆连载更新中... )_哔哩哔哩_bilibilipython222网站实战课程视频教程&#xff08;SpringBootPython爬虫实战&#xff09; ( 火…