本文是看了两个博主的内容,整理在这里是为了以后用时方便查找,更容易理解。引用的博文路径如下(本人也是刚开始看PCL的运用,本文是完全抄下面博主的内容,觉得这位博主写的很详细很清楚,并且自己运行了一遍有效):
ROS入门——PCL激光雷达点云处理(1)_pcl::torosmsg-CSDN博客
以下功能的实现是我在ubuntu20.04的环境下,搭建好了ros环境后进行的。ros环境的搭建可以参考以下博文:
3.ubuntu20.04环境的ros搭建-CSDN博客 或者
4.livox hap(大疆激光雷达)环境搭建_livox hap激光雷达-CSDN博客
下面进行pcl的实现
1、在home下新建文件夹
mkdir -p ~/catkin_ws/src
2、进入src文件夹并初始化
cd ~/catkin_ws/src
catkin_init_workspace
执行完该命令后,src目录下会多出一个 CMakeLists.txt 文件,这个文件一般不需要我们修改。
3、 返回到catkin_ws下,进行编译(注意:每次编译必须在这个ws工作空间下才能编译成功!)
cd ~/catkin_ws/
catkin_make
执行完该命令后,发现工作空间catkin_ws中有三个目录: build devel src。可以从5、看到它们的作用。
4、source一下将工作空间加入环境变量
source devel/setup.bash
注意: 这一步只重新加载了setup.bash文件。如果关闭并打开一个新的命令行窗口,也需要再输入该命令将得到同样的效果。
所以建议采用一劳永逸的方法:.
5、.bashrc文件在用户的home文件夹(/home/USERNAME/.bashrc)下。每次用户打开终端,这个文件会加载命令行窗口或终端的配置。所以可以添加命令或进行配置以方便用户使用。在bashrc文件添加source命令:
echo "source ~/catkin_ws/devel/setup.bash">> ~/.bashrc
或者也可以打开.bashrc文件采用手动修改的方式添加source ~/catkin_ws/devel/setup.bash:
gedit ~/.bashrc
添加完毕,你的bashrc文件应该有两句source:
添加完后,在 .bashrc的同目录下运行
~/.bashrc
5、理解工作空间
工作空间结构:
源空间(src文件夹),放置了功能包、项目、复制的包等。在这个空间中,,最重要的一个文件是CMakeLists.txt。当在工作空间中配置包时,src文件夹中有CMakeLists.txt因为cmake调用它。这个文件是通过catkin_init_workspace命令创建的。
编译空间(build space):在build文件夹里,cmake和catkin为功能包和项目保存缓存信息、配置和其他中间文件。
开发空间(Development(devel)space):devel文件夹用来保存编译后的程序,这些是无须安装就能用来测试的程序。一旦项目通过测试,就可以安装或导出功能包从而与其他开发人员分享。
一、创建节点发布点云数据并可视化
1、在ros工作空间的src目录下新建包(包含依赖项)
catkin_create_pkg chapter10_tutorials pcl_conversions pcl_ros pcl_msgs sensor_msgs
2、在软件包中新建src目录
rospack profile
roscd chapter10_tutorials
mkdir src
3、在src目录下新建pcl_create.cpp,该程序创建了100个随机坐标的点云并以1Hz的频率,topic为“pcl_output"发布。frame设为odom。
#include <ros/ros.h>
#include <pcl/point_cloud.h>
#include <pcl_conversions/pcl_conversions.h>
#include <sensor_msgs/PointCloud2.h>
main (int argc, char **argv)
{
ros::init (argc, argv, "pcl_create");
ros::NodeHandle nh;
ros::Publisher pcl_pub = nh.advertise<sensor_msgs::PointCloud2> ("pcl_output", 1);
pcl::PointCloud<pcl::PointXYZ> cloud;
sensor_msgs::PointCloud2 output;
// Fill in the cloud data
cloud.width = 100;
cloud.height = 1;
cloud.points.resize(cloud.width * cloud.height);
for (size_t i = 0; i < cloud.points.size (); ++i)
{
cloud.points[i].x = 1024 * rand () / (RAND_MAX + 1.0f);
cloud.points[i].y = 1024 * rand () / (RAND_MAX + 1.0f);
cloud.points[i].z = 1024 * rand () / (RAND_MAX + 1.0f);
}
//Convert the cloud to ROS message
pcl::toROSMsg(cloud, output);
output.header.frame_id = "odom";
ros::Rate loop_rate(1);
while (ros::ok())
{
pcl_pub.publish(output);
ros::spinOnce();
loop_rate.sleep();
}
return 0;
}
4、修改cmakelist.txt内容
cmake_minimum_required(VERSION 2.8.3)
project(chapter10_tutorials)
find_package(catkin REQUIRED COMPONENTS
pcl_conversions
pcl_ros
roscpp
sensor_msgs
rospy
)
find_package(PCL REQUIRED)
catkin_package()
include_directories(
${catkin_INCLUDE_DIRS}
${PCL_INCLUDE_DIRS}
)
link_directories(${PCL_LIBRARY_DIRS})
add_executable(pcl_create src/pcl_create.cpp)
target_link_libraries(pcl_create ${catkin_LIBRARIES} ${PCL_LIBRARIES})
5、进入工作空间编译包
cd ~/catkin_ws
catkin_make --pkg chapter10_tutorials
6、若编译成功,新窗口打开ros,新窗口运行pcl_create节点
roscore
rosrun chapter10_tutorials pcl_create
7、新窗口打开rviz,add topic"pcl_output",Global options 设置Frame为odom
rviz
二、加载pcd文件、保存点云为pcd文件
1、加载pcd文件并发布为pcl_output点云:在src下新建pcl_read.cpp,内容为:
#include <ros/ros.h>
#include <pcl/point_cloud.h>
#include <pcl_conversions/pcl_conversions.h>
#include <sensor_msgs/PointCloud2.h>
#include <pcl/io/pcd_io.h>
main(int argc, char **argv)
{
ros::init (argc, argv, "pcl_read");
ros::NodeHandle nh;
ros::Publisher pcl_pub = nh.advertise<sensor_msgs::PointCloud2> ("pcl_output", 1);
sensor_msgs::PointCloud2 output;
pcl::PointCloud<pcl::PointXYZ> cloud;
pcl::io::loadPCDFile ("test_pcd.pcd", cloud);
pcl::toROSMsg(cloud, output);
output.header.frame_id = "odom";
ros::Rate loop_rate(1);
while (ros::ok())
{
pcl_pub.publish(output);
ros::spinOnce();
loop_rate.sleep();
}
return 0;
}
2、保存topic发布的点云为pcd文件,在src下新建pcl_write.cpp内容为:
#include <ros/ros.h>
#include <pcl/point_cloud.h>
#include <pcl_conversions/pcl_conversions.h>
#include <sensor_msgs/PointCloud2.h>
#include <pcl/io/pcd_io.h>
void cloudCB(const sensor_msgs::PointCloud2 &input)
{
pcl::PointCloud<pcl::PointXYZ> cloud;
pcl::fromROSMsg(input, cloud);
pcl::io::savePCDFileASCII ("write_pcd_test.pcd", cloud);
}
main (int argc, char **argv)
{
ros::init (argc, argv, "pcl_write");
ros::NodeHandle nh;
ros::Subscriber bat_sub = nh.subscribe("pcl_output", 10, cloudCB);
ros::spin();
return 0;
}
3、添加内容到cmakelist.txt
add_executable(pcl_read src/pcl_read.cpp)
add_executable(pcl_write src/pcl_write.cpp)
target_link_libraries(pcl_read ${catkin_LIBRARIES} ${PCL_LIBRARIES})
target_link_libraries(pcl_write ${catkin_LIBRARIES} ${PCL_LIBRARIES})
4、在catkin_ws空间下编译包(同上)
5、打开不同的窗口,在pcd文件夹下分别运行节点(因为pcl_read要读取pcd文件)
roscore
roscd chapter10_tutorials/data && rosrun chapter10_tutorials pcl_read
roscd chapter10_tutorials/data && rosrun chapter10_tutorials pcl_write
注意:以上3个命令要打开3个新的终端窗口,依次运行即可。
6、可视化同上
三、cloud_viewer可视化pcd文件的点云
新建cpp文件,所有步骤同上。
#include <iostream>
#include <ros/ros.h>
#include <pcl/visualization/cloud_viewer.h>
#include <sensor_msgs/PointCloud2.h>
#include <pcl_conversions/pcl_conversions.h>
class cloudHandler
{
public:
cloudHandler()
: viewer("Cloud Viewer")
{
pcl::PointCloud<pcl::PointXYZ> cloud;
pcl::io::loadPCDFile ("0.pcd", cloud);
viewer.showCloud(cloud.makeShared());
viewer_timer = nh.createTimer(ros::Duration(0.1), &cloudHandler::timerCB, this);
}
void timerCB(const ros::TimerEvent&)
{
if (viewer.wasStopped())
{
ros::shutdown();
}
}
protected:
ros::NodeHandle nh;
pcl::visualization::CloudViewer viewer;
ros::Timer viewer_timer;
};
main (int argc, char **argv)
{
ros::init (argc, argv, "pcl_filter");
cloudHandler handler;
ros::spin();
return 0;
}
编译并在pcd数据文件夹下运行节点,可得下图。可以按住ctrl键滑轮放大缩小。
四、点云预处理——滤波和缩减采样
1、滤波删除离群值pcl_filter.cpp,处理流程同上
#include <iostream>
#include <ros/ros.h>
#include <pcl/visualization/cloud_viewer.h>
#include <sensor_msgs/PointCloud2.h>
#include <pcl_conversions/pcl_conversions.h>
#include <pcl/filters/statistical_outlier_removal.h>
class cloudHandler
{
public:
cloudHandler()
: viewer("Cloud Viewer")
{
pcl::PointCloud<pcl::PointXYZ> cloud;
pcl::PointCloud<pcl::PointXYZ> cloud_filtered;
pcl::io::loadPCDFile ("0.pcd", cloud);
pcl::StatisticalOutlierRemoval<pcl::PointXYZ> statFilter;//统计离群值算法
statFilter.setInputCloud(cloud.makeShared());//输入点云
statFilter.setMeanK(10);//均值滤波
statFilter.setStddevMulThresh(0.4);//方差0.4
statFilter.filter(cloud_filtered);//输出结果到点云
viewer.showCloud(cloud_filtered.makeShared());
viewer_timer = nh.createTimer(ros::Duration(0.1), &cloudHandler::timerCB, this);
}
void timerCB(const ros::TimerEvent&)
{
if (viewer.wasStopped())
{
ros::shutdown();
}
}
protected:
ros::NodeHandle nh;
pcl::visualization::CloudViewer viewer;
ros::Timer viewer_timer;
};
main (int argc, char **argv)
{
ros::init (argc, argv, "pcl_filter");
cloudHandler handler;
ros::spin();
return 0;
}
滤波结果:
2、滤波以后缩减采样pcl_dawnSample.cpp,采用体素栅格的方法,将点云分割为若干的小立方体(体素),以体素重心的点代表这个体素中所有的点。
public:
cloudHandler()
: viewer("Cloud Viewer")
{
pcl::PointCloud<pcl::PointXYZ> cloud;
pcl::PointCloud<pcl::PointXYZ> cloud_filtered;
pcl::PointCloud<pcl::PointXYZ> cloud_downsampled;
pcl::io::loadPCDFile ("0.pcd", cloud);
//剔除离群值
pcl::StatisticalOutlierRemoval<pcl::PointXYZ> statFilter;
statFilter.setInputCloud(cloud.makeShared());
statFilter.setMeanK(10);
statFilter.setStddevMulThresh(0.2);
statFilter.filter(cloud_filtered);
//缩减采样
pcl::VoxelGrid<pcl::PointXYZ> voxelSampler;//初始化 体素栅格滤波器
voxelSampler.setInputCloud(cloud_filtered.makeShared());//输入点云
voxelSampler.setLeafSize(0.01f, 0.01f, 0.01f);//每个体素的长宽高0.01m
voxelSampler.filter(cloud_downsampled);//输出点云结果
viewer.showCloud(cloud_downsampled.makeShared());
viewer_timer = nh.createTimer(ros::Duration(0.1), &cloudHandler::timerCB, this);
}
缩减采样结果:
五、点云预处理——点云分割
1、pcl_segmentation.cpp采用RANSAC算法提取点云的plane平面。处理步骤同一
#include <ros/ros.h>
#include <pcl/point_cloud.h>
#include <pcl/io/pcd_io.h>
#include <pcl/visualization/cloud_viewer.h>
#include <sensor_msgs/PointCloud2.h>
#include <pcl_conversions/pcl_conversions.h>
#include <pcl/filters/statistical_outlier_removal.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/ModelCoefficients.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/filters/extract_indices.h>
main(int argc, char **argv)
{
ros::init (argc, argv, "pcl_filter");
ros::NodeHandle nh;
//初始化
pcl::PointCloud<pcl::PointXYZ> cloud;
pcl::PointCloud<pcl::PointXYZ> cloud_filtered;
pcl::PointCloud<pcl::PointXYZ> cloud_downsampled;
pcl::PointCloud<pcl::PointXYZ> cloud_segmented;
ros::Publisher pcl_pub0 = nh.advertise<sensor_msgs::PointCloud2> ("pcl_cloud", 1);
ros::Publisher pcl_pub1 = nh.advertise<sensor_msgs::PointCloud2> ("pcl_segment", 1);
ros::Publisher ind_pub = nh.advertise<pcl_msgs::PointIndices>("point_indices", 1);
ros::Publisher coef_pub = nh.advertise<pcl_msgs::ModelCoefficients>("planar_coef", 1);
sensor_msgs::PointCloud2 output0;
sensor_msgs::PointCloud2 output1;
pcl::io::loadPCDFile ("0.pcd", cloud);
pcl::toROSMsg(cloud, output0);
output0.header.frame_id = "odom";
//剔除离群值
pcl::StatisticalOutlierRemoval<pcl::PointXYZ> statFilter;
statFilter.setInputCloud(cloud.makeShared());
statFilter.setMeanK(10);
statFilter.setStddevMulThresh(0.2);
statFilter.filter(cloud_filtered);
//体素栅格法下采样
pcl::VoxelGrid<pcl::PointXYZ> voxelSampler;
voxelSampler.setInputCloud(cloud_filtered.makeShared());
voxelSampler.setLeafSize(0.01f, 0.01f, 0.01f);
voxelSampler.filter(cloud_downsampled);
//RANSAC算法 分割
pcl::ModelCoefficients coefficients;//初始化模型系数
pcl::PointIndices::Ptr inliers(new pcl::PointIndices());//初始化索引参数
pcl::SACSegmentation<pcl::PointXYZ> segmentation;//创建算法
segmentation.setModelType(pcl::SACMODEL_PLANE);//设置分割模型为平面模型
segmentation.setMethodType(pcl::SAC_RANSAC);//设置迭代算法
segmentation.setMaxIterations(1000);//设置最大迭代次数
segmentation.setDistanceThreshold(0.01);//设置到模型的最大距离
segmentation.setInputCloud(cloud_downsampled.makeShared());//输入点云
segmentation.segment(*inliers, coefficients);//输出点云结果 ×inliers是结果点云的索引,coe是模型系数
//发布模型系数
pcl_msgs::ModelCoefficients ros_coefficients;
pcl_conversions::fromPCL(coefficients, ros_coefficients);//pcl->msg
//发布抽样的内点索引
pcl_msgs::PointIndices ros_inliers;
pcl_conversions::fromPCL(*inliers, ros_inliers);
//创建分割点云,从点云中提取内点
pcl::ExtractIndices<pcl::PointXYZ> extract;
extract.setInputCloud(cloud_downsampled.makeShared());
extract.setIndices(inliers);
extract.setNegative(false);
extract.filter(cloud_segmented);
pcl::toROSMsg(cloud_segmented, output1);
output1.header.frame_id = "odom";
ros::Rate loop_rate(1);
while (ros::ok())
{
pcl_pub0.publish(output0);
pcl_pub1.publish(output1);
ind_pub.publish(ros_inliers);
coef_pub.publish(ros_coefficients);//发布
ros::spinOnce();
loop_rate.sleep();
}
return 0;
}
出现警告:
[pcl::VoxelGrid::applyFilter] Leaf size is too small for the input dataset. Integer indices would overflow.
滤波缩减采样后的结果:
平面滤波结果:
滤波缩减采样结果:
平面滤波结果:
2、(这是一个错误的程序,等以后学明白了再来解释为什么错误。viewer可以显示分割出的点云,不知道为啥没有发布成功,在rviz中不能显示,rostopic echo topic 也不能显示消息。)
#include <iostream>
#include <ros/ros.h>
#include <pcl/visualization/cloud_viewer.h>
#include <sensor_msgs/PointCloud2.h>
#include <pcl_conversions/pcl_conversions.h>
#include <pcl/filters/statistical_outlier_removal.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/point_cloud.h>
#include <pcl/ModelCoefficients.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/filters/extract_indices.h>
class cloudHandler
{
public:
cloudHandler()
: viewer("Cloud Viewer")
{
//初始化
pcl::PointCloud<pcl::PointXYZ> cloud;
pcl::PointCloud<pcl::PointXYZ> cloud_filtered;
pcl::PointCloud<pcl::PointXYZ> cloud_downsampled;
pcl::PointCloud<pcl::PointXYZ> cloud_segmented;
pcl_pubb = nh.advertise<sensor_msgs::PointCloud2>("pcl_cloud", 1);
pcl_pub = nh.advertise<sensor_msgs::PointCloud2>("pcl_segmented", 1);
ind_pub = nh.advertise<pcl_msgs::PointIndices>("point_indices", 1);
coef_pub = nh.advertise<pcl_msgs::ModelCoefficients>("planar_coef", 1);
pcl::io::loadPCDFile ("test_pcd.pcd", cloud);
//剔除离群值
pcl::StatisticalOutlierRemoval<pcl::PointXYZ> statFilter;
statFilter.setInputCloud(cloud.makeShared());
statFilter.setMeanK(10);
statFilter.setStddevMulThresh(0.2);
statFilter.filter(cloud_filtered);
//体素栅格法下采样
pcl::VoxelGrid<pcl::PointXYZ> voxelSampler;
voxelSampler.setInputCloud(cloud_filtered.makeShared());
voxelSampler.setLeafSize(0.01f, 0.01f, 0.01f);
voxelSampler.filter(cloud_downsampled);
//RANSAC算法 分割
pcl::ModelCoefficients coefficients;//初始化模型系数
pcl::PointIndices::Ptr inliers(new pcl::PointIndices());//初始化索引参数
pcl::SACSegmentation<pcl::PointXYZ> segmentation;//创建算法
segmentation.setModelType(pcl::SACMODEL_PLANE);//设置分割模型为平面模型
segmentation.setMethodType(pcl::SAC_RANSAC);//设置迭代算法
segmentation.setMaxIterations(1000);//设置最大迭代次数
segmentation.setDistanceThreshold(0.01);//设置到模型的最大距离
segmentation.setInputCloud(cloud_downsampled.makeShared());//输入点云
segmentation.segment(*inliers, coefficients);//输出点云结果 ×inliers是结果点云的索引,coe是模型系数
//发布模型系数
pcl_msgs::ModelCoefficients ros_coefficients;
pcl_conversions::fromPCL(coefficients, ros_coefficients);//pcl->msg
coef_pub.publish(ros_coefficients);//发布
//发布抽样的内点索引
pcl_msgs::PointIndices ros_inliers;
pcl_conversions::fromPCL(*inliers, ros_inliers);
ind_pub.publish(ros_inliers);
//创建分割点云,从点云中提取内点
pcl::ExtractIndices<pcl::PointXYZ> extract;
extract.setInputCloud(cloud_downsampled.makeShared());
extract.setIndices(inliers);
extract.setNegative(false);
extract.filter(cloud_segmented);
//发布点云
sensor_msgs::PointCloud2 output;
pcl::toROSMsg(cloud_segmented, output);
pcl_pub.publish(output);
sensor_msgs::PointCloud2 outputt;
pcl::toROSMsg(cloud,outputt);
pcl_pubb.publish(outputt);
//可视化
viewer.showCloud(cloud_segmented.makeShared());
viewer_timer = nh.createTimer(ros::Duration(0.1), &cloudHandler::timerCB, this);
}
void timerCB(const ros::TimerEvent&)
{
if (viewer.wasStopped())
{
ros::shutdown();
}
}
protected:
ros::NodeHandle nh;
pcl::visualization::CloudViewer viewer;
ros::Timer viewer_timer;
ros::Publisher pcl_pubb,pcl_pub, ind_pub, coef_pub;
};
main (int argc, char **argv)
{
ros::init (argc, argv, "pcl_filter");
cloudHandler handler;
ros::spin();
return 0;
}
六、播放bag并可视化激光雷达点云
1、查看无人艇的视频和雷达数据20200116.bag信息:
rosbag info 20200116.bag
发现时长约3分钟,topic有fix(卫星导航数据)、heading(姿态四元数)、points_raw(激光雷达点云)、rosout(节点图)、camera_info(摄像机信息)、image_raw(摄像机图片)、time_reference(时间)、vel(速度?角速度?)
2、回放bag文件:
rosbag play 20200116.bag
3、打开rviz:
rosrun rviz rviz
4、点击add--->add topic--->Pointcloud2(或 image)
5、Global Options :Fixed Frame 改成pandar
(刚开始没有改fixed frame,add topic以后总是显示错误,后来在src下的雷达的包里看到readme文件里面写着:4. Change fixed frame to `pandar`。所以在vriz里修改了,图像和点云都可以显示了。
七、其他
1、将bag文件中的点云直接转成pcd文件,每帧一个pcd文件。
rosrun pcl_ros bag_to_pcd data.bag /points_raw /media/xiaoxiong/小狗熊/无人艇/GKSdata
原文链接:https://blog.csdn.net/weixin_40820983/article/details/105803811