2024美赛数学建模思路 - 案例:ID3-决策树分类算法

文章目录

  • 0 赛题思路
    • 1 算法介绍
    • 2 FP树表示法
    • 3 构建FP树
    • 4 实现代码
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 算法介绍

FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模式树算法,他与Apriori算法一样也是用来挖掘频繁项集的,不过不同的是,FP-Tree算法是Apriori算法的优化处理,他解决了Apriori算法在过程中会产生大量的候选集的问题,而FP-Tree算法则是发现频繁模式而不产生候选集。但是频繁模式挖掘出来后,产生关联规则的步骤还是和Apriori是一样的。

常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth。Apriori通过不断的构造候选集、筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数太多,效率比较低下。FPGrowth不同于Apriori的“试探”策略,算法只需扫描原始数据两遍,通过FP-tree数据结构对原始数据进行压缩,效率较高。

FP代表频繁模式(Frequent Pattern) ,算法主要分为两个步骤:FP-tree构建、挖掘频繁项集。

2 FP树表示法

FP树通过逐个读入事务,并把事务映射到FP树中的一条路径来构造。由于不同的事务可能会有若干个相同的项,因此它们的路径可能部分重叠。路径相互重叠越多,使用FP树结构获得的压缩效果越好;如果FP树足够小,能够存放在内存中,就可以直接从这个内存中的结构提取频繁项集,而不必重复地扫描存放在硬盘上的数据。

一颗FP树如下图所示:
  在这里插入图片描述
通常,FP树的大小比未压缩的数据小,因为数据的事务常常共享一些共同项,在最好的情况下,所有的事务都具有相同的项集,FP树只包含一条节点路径;当每个事务都具有唯一项集时,导致最坏情况发生,由于事务不包含任何共同项,FP树的大小实际上与原数据的大小一样。

FP树的根节点用φ表示,其余节点包括一个数据项和该数据项在本路径上的支持度;每条路径都是一条训练数据中满足最小支持度的数据项集;FP树还将所有相同项连接成链表,上图中用蓝色连线表示。

为了快速访问树中的相同项,还需要维护一个连接具有相同项的节点的指针列表(headTable),每个列表元素包括:数据项、该项的全局最小支持度、指向FP树中该项链表的表头的指针。
  在这里插入图片描述

3 构建FP树

现在有如下数据:

在这里插入图片描述

FP-growth算法需要对原始训练集扫描两遍以构建FP树。

第一次扫描,过滤掉所有不满足最小支持度的项;对于满足最小支持度的项,按照全局最小支持度排序,在此基础上,为了处理方便,也可以按照项的关键字再次排序。
在这里插入图片描述

第二次扫描,构造FP树。

参与扫描的是过滤后的数据,如果某个数据项是第一次遇到,则创建该节点,并在headTable中添加一个指向该节点的指针;否则按路径找到该项对应的节点,修改节点信息。具体过程如下所示:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
 从上面可以看出,headTable并不是随着FPTree一起创建,而是在第一次扫描时就已经创建完毕,在创建FPTree时只需要将指针指向相应节点即可。从事务004开始,需要创建节点间的连接,使不同路径上的相同项连接成链表。

4 实现代码

def loadSimpDat():
    simpDat = [['r', 'z', 'h', 'j', 'p'],
               ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
               ['z'],
               ['r', 'x', 'n', 'o', 's'],
               ['y', 'r', 'x', 'z', 'q', 't', 'p'],
               ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
    return simpDat

def createInitSet(dataSet):
    retDict = {}
    for trans in dataSet:
        fset = frozenset(trans)
        retDict.setdefault(fset, 0)
        retDict[fset] += 1
    return retDict

class treeNode:
    def __init__(self, nameValue, numOccur, parentNode):
        self.name = nameValue
        self.count = numOccur
        self.nodeLink = None
        self.parent = parentNode
        self.children = {}

    def inc(self, numOccur):
        self.count += numOccur

    def disp(self, ind=1):
        print('   ' * ind, self.name, ' ', self.count)
        for child in self.children.values():
            child.disp(ind + 1)


def createTree(dataSet, minSup=1):
    headerTable = {}
    #此一次遍历数据集, 记录每个数据项的支持度
    for trans in dataSet:
        for item in trans:
            headerTable[item] = headerTable.get(item, 0) + 1

    #根据最小支持度过滤
    lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys()))
    for k in lessThanMinsup: del(headerTable[k])

    freqItemSet = set(headerTable.keys())
    #如果所有数据都不满足最小支持度,返回None, None
    if len(freqItemSet) == 0:
        return None, None

    for k in headerTable:
        headerTable[k] = [headerTable[k], None]

    retTree = treeNode('φ', 1, None)
    #第二次遍历数据集,构建fp-tree
    for tranSet, count in dataSet.items():
        #根据最小支持度处理一条训练样本,key:样本中的一个样例,value:该样例的的全局支持度
        localD = {}
        for item in tranSet:
            if item in freqItemSet:
                localD[item] = headerTable[item][0]

        if len(localD) > 0:
            #根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] desc
            orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: (p[1],p[0]), reverse=True)]
            updateTree(orderedItems, retTree, headerTable, count)
    return retTree, headerTable


def updateTree(items, inTree, headerTable, count):
    if items[0] in inTree.children:  # check if orderedItems[0] in retTree.children
        inTree.children[items[0]].inc(count)  # incrament count
    else:  # add items[0] to inTree.children
        inTree.children[items[0]] = treeNode(items[0], count, inTree)
        if headerTable[items[0]][1] == None:  # update header table
            headerTable[items[0]][1] = inTree.children[items[0]]
        else:
            updateHeader(headerTable[items[0]][1], inTree.children[items[0]])

    if len(items) > 1:  # call updateTree() with remaining ordered items
        updateTree(items[1:], inTree.children[items[0]], headerTable, count)


def updateHeader(nodeToTest, targetNode):  # this version does not use recursion
    while (nodeToTest.nodeLink != None):  # Do not use recursion to traverse a linked list!
        nodeToTest = nodeToTest.nodeLink
    nodeToTest.nodeLink = targetNode

simpDat = loadSimpDat()
dictDat = createInitSet(simpDat)
myFPTree,myheader = createTree(dictDat, 3)
myFPTree.disp()

上面的代码在第一次扫描后并没有将每条训练数据过滤后的项排序,而是将排序放在了第二次扫描时,这可以简化代码的复杂度。

控制台信息:

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/330250.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[晓理紫]每日论文分享(有中文摘要,源码或项目地址)--具身智能、强化学习

专属领域论文订阅 VX关注 晓理紫&#xff0c;每日更新论文&#xff0c;如感兴趣&#xff0c;请转发给有需要的同学&#xff0c;谢谢支持 分类: 大语言模型LLM视觉模型VLM扩散模型视觉导航具身智能&#xff0c;机器人强化学习开放词汇&#xff0c;检测分割 [晓理紫]每日论文分享…

【机器学习300问】9、梯度下降是用来干嘛的?

当你和我一样对自己问出这个问题后&#xff0c;分析一下&#xff01;其实我首先得知道梯度下降是什么&#xff0c;也就它的定义。其次我得了解它具体用在什么地方&#xff0c;也就是使用场景。最后才是这个问题&#xff0c;梯度下降有什么用&#xff1f;怎么用&#xff1f; 所以…

02--数据库事务

1、数据库事务 1.1 数据库事务介绍 事务&#xff1a;一组逻辑操作单元,使数据从一种状态变换到另一种状态。 事务处理&#xff08;事务操作&#xff09;&#xff1a;保证所有事务都作为一个工作单元来执行&#xff0c;即使出现了故障&#xff0c;都不能改变这种执行方式。当…

【分布式技术】分布式存储ceph之RGW接口

目录 1、对象存储概念 2、创建 RGW 接口 //在管理节点创建一个 RGW 守护进程 #创建成功后默认情况下会自动创建一系列用于 RGW 的存储池 #默认情况下 RGW 监听 7480 号端口 //开启 httphttps &#xff0c;更改监听端口 #更改监听端口 ​ //创建 RadosGW 账户 …

STM32F103标准外设库——中断应用/事件控制器(六)

个人名片&#xff1a; &#x1f981;作者简介&#xff1a;一名喜欢分享和记录学习的在校大学生 &#x1f42f;个人主页&#xff1a;妄北y &#x1f427;个人QQ&#xff1a;2061314755 &#x1f43b;个人邮箱&#xff1a;2061314755qq.com &#x1f989;个人WeChat&#xff1a;V…

【记录】解决 git 仓库突然出现连接失败

问题描述 今天在 push 代码代码的时候突然发现无法 push(但是我可以正常打开 Gihub)&#xff0c;这可不行&#xff0c;我可是 git 的重度使用者&#x1f60d;&#xff0c;我所有的代码都托管在了 Github 上&#xff0c;没有它我的日子怎么活啊&#xff01;&#xff01;&#x…

Unity向量叉乘

叉乘计算公式 Unity中叉乘计算 Vector3.Cross(A.position, B.position); 几何意义 假设向量A和B 都在XZ平面上 向量A叉乘向量B y大于0 证明 B在A右侧 y小于0 证明 B在A左侧 示例 Vector3 C Vector3.Cross(A.position, B.position); if(C.y > 0) {print("B在A右侧&qu…

【不需要网络不需要显卡】本地部署GPT

【不需要网络/不需要显卡】本地部署GPT 大家好&#xff0c;我是老 J 我们都知道ChatGPT目前只有两种使用方式&#xff0c;一种是直接去官网访问&#xff0c;适合个人用户&#xff1b;另一种是API调用&#xff0c;适合企业或者网站使用。这两种方式的门槛都比较高&#xff0c;…

修改iview的表格table展开的默认icon和样式

修改前 修改后 修改内容 .title_label_list .ivu-icon-ios-add{font-size: 26px;color: #888888; } .title_label_list .ivu-icon-ios-add:hover{color: #11AAAA; } .title_label_list .ivu-icon-ios-add:before {content: "\F341"; } .title_label_list .ivu-icon-…

【论文阅读】Deep Graph Contrastive Representation Learning

目录 0、基本信息1、研究动机2、创新点3、方法论3.1、整体框架及算法流程3.2、Corruption函数的具体实现3.2.1、删除边&#xff08;RE&#xff09;3.2.2、特征掩盖&#xff08;MF&#xff09; 3.3、[编码器](https://blog.csdn.net/qq_44426403/article/details/135443921)的设…

请卸载这 12 个被淘汰的 VS Code 插件

你好&#xff0c;我是坚持分享干货的 EarlGrey&#xff0c;翻译出版过《Python编程无师自通》、《Python并行计算手册》等技术书籍。 如果我的分享对你有帮助&#xff0c;请关注我&#xff0c;一起向上进击。 本周赠书福利&#xff0c;点此查看详情 随着 VS Code 的发展&#x…

Springboot 子工程构建完后无法找到springboot依赖

问题: 构建完子工程后无法找到SpringBootTest 解决方案: 最好用这个构建 https://www.cnblogs.com/he-wen/p/16735239.html 1.先观察项目目录 是否正确 2.观察子工程目录 3.看pom.xml中是否引用springboot依赖 4.检查代码 查看父项目是否包含子模块 查看子模块的父项目是否…

新手基础易懂的创建javaweb项目的方法(适用于IDEA 2023版)

新手基础易懂的创建javaweb项目的方法 前言我的IDEA版本新建项目步骤1步骤2步骤3步骤4步骤5步骤6<font colorred>特别注意&#xff0c;一定要注意步骤7步骤8 配置Tomcat服务器步骤9步骤10步骤11步骤12步骤13修改前修改后 步骤14 点击修复修改前修改后 试运行 前言 创建ja…

利用IP应用场景API识别真实用户

引言 在当今数字化时代&#xff0c;随着互联网的普及和应用的广泛&#xff0c;验证用户身份的重要性变得越来越突出。在许多场景中&#xff0c;特别是在涉及安全性、用户体验以及个人隐私保护方面&#xff0c;确定用户的真实身份至关重要。而IP应用场景API则是一种强大的工具&…

error warning

&#xff08;持续更新&#xff09; 1、error C1189 错误 1 error C1189: #error : Building MFC application with /MD[d] (CRT dll version) requires MFC shared dll version. Please #define _AFXDLL or do not use /MD[d] c:\program files (x86)\microsoft vi…

【ROS2-基于地图的定位 AMCL】-1 基本理念

所有内容请查看&#xff1a;博客学习目录_Howe_xixi的博客-CSDN博客 飞书原文档请联系我

IO网络编程Day4

广播 #include<myhead.h>int main(int argc, const char *argv[]) {//1、创建套接字int sfd socket(AF_INET, SOCK_DGRAM, 0);if(sfd -1){perror("socket error");return -1;}//2、将套接字设置成允许广播int broadcast 1;if(setsockopt(sfd, SOL_SOCKET, …

Jupyter Notebook五分钟基础速通

1 作用 常用于数据分析 2 安装 2.1 Anaconda 通过直接安装Anaconda&#xff0c;会自动安装Jupyter Notebook 2.2 命令行安装 ① 3.x版本 pip3 install --upgrade pip pip3 install jupyter ② 2.x版本 pip install --upgrade pip pip install jupyter 3 启动 cmd窗口下…

国标GB28181安防视频监控EasyCVR级联后上级平台视频加载慢的原因排查

国标GB28181协议安防视频监控系统EasyCVR视频综合管理平台&#xff0c;采用了开放式的网络结构&#xff0c;可以提供实时远程视频监控、视频录像、录像回放与存储、告警、语音对讲、云台控制、平台级联、磁盘阵列存储、视频集中存储、云存储等丰富的视频能力&#xff0c;同时还…

2025考研数学汤家凤高数、线代、概率论视频,百度网盘资源+PDF讲义

现在天气逐渐变凉&#xff0c;同学们都放寒假了&#xff01;我个人觉得寒假是给有梦想的同学准备的&#xff01; 我当时就喜欢放寒暑假&#xff0c;我觉得放假的时候别人在玩&#xff0c;我就能抽时间学习&#xff0c;来超越别人。所以好好利用寒假&#xff0c;绝对在考研的复…