2024年美赛数学建模思路 - 案例:ID3-决策树分类算法

文章目录

  • 0 赛题思路
    • 1 算法介绍
    • 2 FP树表示法
    • 3 构建FP树
    • 4 实现代码
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 算法介绍

FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模式树算法,他与Apriori算法一样也是用来挖掘频繁项集的,不过不同的是,FP-Tree算法是Apriori算法的优化处理,他解决了Apriori算法在过程中会产生大量的候选集的问题,而FP-Tree算法则是发现频繁模式而不产生候选集。但是频繁模式挖掘出来后,产生关联规则的步骤还是和Apriori是一样的。

常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth。Apriori通过不断的构造候选集、筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数太多,效率比较低下。FPGrowth不同于Apriori的“试探”策略,算法只需扫描原始数据两遍,通过FP-tree数据结构对原始数据进行压缩,效率较高。

FP代表频繁模式(Frequent Pattern) ,算法主要分为两个步骤:FP-tree构建、挖掘频繁项集。

2 FP树表示法

FP树通过逐个读入事务,并把事务映射到FP树中的一条路径来构造。由于不同的事务可能会有若干个相同的项,因此它们的路径可能部分重叠。路径相互重叠越多,使用FP树结构获得的压缩效果越好;如果FP树足够小,能够存放在内存中,就可以直接从这个内存中的结构提取频繁项集,而不必重复地扫描存放在硬盘上的数据。

一颗FP树如下图所示:
  在这里插入图片描述
通常,FP树的大小比未压缩的数据小,因为数据的事务常常共享一些共同项,在最好的情况下,所有的事务都具有相同的项集,FP树只包含一条节点路径;当每个事务都具有唯一项集时,导致最坏情况发生,由于事务不包含任何共同项,FP树的大小实际上与原数据的大小一样。

FP树的根节点用φ表示,其余节点包括一个数据项和该数据项在本路径上的支持度;每条路径都是一条训练数据中满足最小支持度的数据项集;FP树还将所有相同项连接成链表,上图中用蓝色连线表示。

为了快速访问树中的相同项,还需要维护一个连接具有相同项的节点的指针列表(headTable),每个列表元素包括:数据项、该项的全局最小支持度、指向FP树中该项链表的表头的指针。
  在这里插入图片描述

3 构建FP树

现在有如下数据:

在这里插入图片描述

FP-growth算法需要对原始训练集扫描两遍以构建FP树。

第一次扫描,过滤掉所有不满足最小支持度的项;对于满足最小支持度的项,按照全局最小支持度排序,在此基础上,为了处理方便,也可以按照项的关键字再次排序。
在这里插入图片描述

第二次扫描,构造FP树。

参与扫描的是过滤后的数据,如果某个数据项是第一次遇到,则创建该节点,并在headTable中添加一个指向该节点的指针;否则按路径找到该项对应的节点,修改节点信息。具体过程如下所示:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
 从上面可以看出,headTable并不是随着FPTree一起创建,而是在第一次扫描时就已经创建完毕,在创建FPTree时只需要将指针指向相应节点即可。从事务004开始,需要创建节点间的连接,使不同路径上的相同项连接成链表。

4 实现代码

def loadSimpDat():
    simpDat = [['r', 'z', 'h', 'j', 'p'],
               ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
               ['z'],
               ['r', 'x', 'n', 'o', 's'],
               ['y', 'r', 'x', 'z', 'q', 't', 'p'],
               ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
    return simpDat

def createInitSet(dataSet):
    retDict = {}
    for trans in dataSet:
        fset = frozenset(trans)
        retDict.setdefault(fset, 0)
        retDict[fset] += 1
    return retDict

class treeNode:
    def __init__(self, nameValue, numOccur, parentNode):
        self.name = nameValue
        self.count = numOccur
        self.nodeLink = None
        self.parent = parentNode
        self.children = {}

    def inc(self, numOccur):
        self.count += numOccur

    def disp(self, ind=1):
        print('   ' * ind, self.name, ' ', self.count)
        for child in self.children.values():
            child.disp(ind + 1)


def createTree(dataSet, minSup=1):
    headerTable = {}
    #此一次遍历数据集, 记录每个数据项的支持度
    for trans in dataSet:
        for item in trans:
            headerTable[item] = headerTable.get(item, 0) + 1

    #根据最小支持度过滤
    lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys()))
    for k in lessThanMinsup: del(headerTable[k])

    freqItemSet = set(headerTable.keys())
    #如果所有数据都不满足最小支持度,返回None, None
    if len(freqItemSet) == 0:
        return None, None

    for k in headerTable:
        headerTable[k] = [headerTable[k], None]

    retTree = treeNode('φ', 1, None)
    #第二次遍历数据集,构建fp-tree
    for tranSet, count in dataSet.items():
        #根据最小支持度处理一条训练样本,key:样本中的一个样例,value:该样例的的全局支持度
        localD = {}
        for item in tranSet:
            if item in freqItemSet:
                localD[item] = headerTable[item][0]

        if len(localD) > 0:
            #根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] desc
            orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: (p[1],p[0]), reverse=True)]
            updateTree(orderedItems, retTree, headerTable, count)
    return retTree, headerTable


def updateTree(items, inTree, headerTable, count):
    if items[0] in inTree.children:  # check if orderedItems[0] in retTree.children
        inTree.children[items[0]].inc(count)  # incrament count
    else:  # add items[0] to inTree.children
        inTree.children[items[0]] = treeNode(items[0], count, inTree)
        if headerTable[items[0]][1] == None:  # update header table
            headerTable[items[0]][1] = inTree.children[items[0]]
        else:
            updateHeader(headerTable[items[0]][1], inTree.children[items[0]])

    if len(items) > 1:  # call updateTree() with remaining ordered items
        updateTree(items[1:], inTree.children[items[0]], headerTable, count)


def updateHeader(nodeToTest, targetNode):  # this version does not use recursion
    while (nodeToTest.nodeLink != None):  # Do not use recursion to traverse a linked list!
        nodeToTest = nodeToTest.nodeLink
    nodeToTest.nodeLink = targetNode

simpDat = loadSimpDat()
dictDat = createInitSet(simpDat)
myFPTree,myheader = createTree(dictDat, 3)
myFPTree.disp()

上面的代码在第一次扫描后并没有将每条训练数据过滤后的项排序,而是将排序放在了第二次扫描时,这可以简化代码的复杂度。

控制台信息:

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/329334.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Eclipse搭建python环境

一、下载eclipse eclipse官网下载参考链接 二、 下载PyDev ​PyDev 三、安装和配置pyDev 下载完PyDev&#xff0c;解压之后是下面两个文件夹&#xff0c;我下载的版本是PyDev 7.7 ,然后拷到eclipse对应的目录下就可以 四、然后新建一个python程序 1.新建一个项目 ​​…

2024-01-17复盘和总结

今日复盘 今天是我失业的第一天&#xff0c;心里有点难受&#xff0c;但是没办法&#xff0c;生活需要继续。 1.做了什么&#xff1f; 今天早上9点出发&#xff0c;骑电动车去了闵行区的图书馆&#xff0c;在图书馆里优化了简历&#xff0c;把word版的简历变成了pdf版的简历…

Ceph分布式存储(1)

目录 一.ceph分布式存储 Ceph架构&#xff08;自上往下&#xff09; OSD的存储引擎&#xff1a; Ceph的存储过程&#xff1a; 二. 基于 ceph-deploy 部署 Ceph 集群 20-40节点上添加3块硬盘&#xff0c;一个网卡&#xff1a; 10节点为admin&#xff0c;20-40为node&…

数据结构与算法:归并排序

数据结构与算法&#xff1a;归并排序 归并思想递归法非递归 归并思想 在讲解归并排序前&#xff0c;我们先看到一个问题&#xff1a; 对于这样两个有序的数组&#xff0c;如何将它们合并为一个有序的数组&#xff1f; 在此我们处理这个问题的思路就是&#xff1a;开辟一个新的…

Java数据结构实现数组(配套习题)

数据结构 数组 一组相同数据类型的集合 特点 数组在内存中是连续分配的创建时要指明数组的大小数组名代表首地址,索引从0开始,到数组的长度-1数组一旦创建好,大小不可以改变使用索引 获取索引位置的值 arr[index]修改 arr[index] val删除 (假删除)遍历,将数组中的元素,依次…

VMware虚拟机自定义网段及物理机ping不通虚拟机问题解决

Vmware网络介绍&#x1f6dc; VMware虚拟机提供了几种网络模式&#xff0c;其中包括桥接模式&#xff08;Bridged Mode&#xff09;、NAT模式&#xff08;Network Address Translation Mode&#xff09;和仅主机模式&#xff08;Host-Only Mode&#xff09;。这些模式允许虚拟…

掌握Spring缓存-全面指南与最佳实践

第1章&#xff1a;引言 大家好&#xff0c;我是小黑&#xff0c;咱们今天来聊聊缓存&#xff0c;在Java和Spring里&#xff0c;缓存可是个大角色。咱们在网上购物&#xff0c;每次查看商品详情时&#xff0c;如果服务器都要去数据库里翻箱倒柜&#xff0c;那速度得慢成什么样&…

【计算机网络】网络层——详解IP协议

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【网络编程】 本专栏旨在分享学习计算机网络的一点学习心得&#xff0c;欢迎大家在评论区交流讨论&#x1f48c; 目录 &#x1f431;一、I…

.Net Core 使用 AspNetCoreRateLimit 实现限流

上一篇文章介绍过ASP.NET Core 的 Web Api 实现限流 中间件-CSDN博客 使用.NET 7 自带的中间件 Microsoft.AspNetCore.RateLimiting 可以实现简单的Api限流&#xff0c;但是这个.NET 7以后才集成的中间件&#xff0c;如果你使用的是早期版本的.NET&#xff0c;可以使用第三方库…

腊八蒜怎么腌制才能又脆又绿 把这招记在备忘录一步步制作

过了腊八就是年&#xff0c;这句话像是一个温暖的预告&#xff0c;告诉我们新年即将到来。而在我家的年味里&#xff0c;总少不了一瓶瓶翠绿的腊八蒜。每当亲朋好友围坐在一起&#xff0c;那独特的蒜香总能为我们的欢聚时光增添几分风味。 腌制腊八蒜是个技术活&#xff0c;很…

Git Merge、Rebase 和 Squash 之间的区别

文章目录 Git MergeGit RebaseGit Squash结论 作为一名开发人员&#xff0c;您可能使用过 Git 和 GitHub&#xff0c;掌握了版本控制的要点。通常通过拉取请求将分支的更改集成到主分支中是一项常见任务。许多人的默认选择是“合并”功能。 然而&#xff0c;版本控制领域提供了…

论文笔记:信息融合的门控多模态单元(GMU)

整理了GMU&#xff08;ICLR2017 GATED MULTIMODAL UNITS FOR INFORMATION FUSION&#xff09;论文的阅读笔记 背景模型实验 论文地址&#xff1a; GMU 背景 多模态指的是同一个现实世界的概念可以用不同的视图或数据类型来描述。比如维基百科有时会用音频的混合来描述一个名人…

项目解决方案:“ZL铁路轨行车辆”实时视频监控系统

目 录 一、建设背景 1.1 政策背景 1.2 现状 二、建设目标 三、建设依据 四、建设原则 4.1经济高效性 4.2系统开放性 4.3系统继承性 4.4系统扩展性 4.5系统经济性 4.6系统安全性 五、系统架构 5.1系统架构图 5.2技术架构 1、DVS 2、中心管理服务…

测试的基本概念

1、什么是需求&#xff1f; 在企业中主要分为两类&#xff1a;用户需求和软件需求 用户需求&#xff1a;甲方的需求&#xff0c;或者终端用户使用产品时必须要完成的任务&#xff08;比较简略&#xff09;。 软件需求&#xff1a;或者叫功能需求&#xff0c;该需求会详细描述开…

Qt单个字符判断

1.相关说明 字符的Unicode编码、单个字符的判断 2.界面绘制 3.相关主要代码 #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui;…

数学建模常见算法的通俗理解(更新中)

目录 1.层次分析法&#xff08;结合某些属性及个人倾向&#xff0c;做出某种决定&#xff09; 1.1 粗浅理解 1.2 算法过程 1.2.1 构造判断矩阵 1.2.2 计算权重向量 1.2.3 计算最大特征根 1.2.4 计算C.I.值 1.2.5 求解C.R.值 1.2.6 判断一致性 1.2.7 计算总得分 2 神经…

MySQL 多版本并发控制 MVCC

MVCC出现背景 事务的4个隔离级别以及对应的三种异常 读未提交&#xff08;Read uncommitted&#xff09; 读已提交&#xff08;Read committed&#xff09;&#xff1a;脏读 可重复读&#xff08;Repeatable read&#xff09;&#xff1a;不可重复读 串行化&#xff08;Se…

pygame学习(三)——支持多种类型的事件

大家好&#xff01;我是码银&#x1f970; 欢迎关注&#x1f970;&#xff1a; CSDN&#xff1a;码银 公众号&#xff1a;码银学编程 实时事件循环 为了保证程序的持续刷新、保持打开的状态&#xff0c;我们会创建一个无限循环&#xff0c;通常使用的是while语句&#xff0c;w…

嵌出式学习又一天

关于485通讯 485属于串口通信&#xff0c;属于物理层的&#xff0c;规定为2线&#xff0c;半双工的多点通信标准&#xff0c;它的电气特性不一样&#xff0c;用缆线两端电压差值来表示传递信号&#xff0c;rs485仅仅规定了接收端和发送端的电气特性&#xff0c;没有规定任何数据…