2024美赛数学建模思路 - 案例:FPTree-频繁模式树算法

文章目录

    • 算法介绍
    • FP树表示法
    • 构建FP树
    • 实现代码
  • 建模资料

## 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

算法介绍

FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模式树算法,他与Apriori算法一样也是用来挖掘频繁项集的,不过不同的是,FP-Tree算法是Apriori算法的优化处理,他解决了Apriori算法在过程中会产生大量的候选集的问题,而FP-Tree算法则是发现频繁模式而不产生候选集。但是频繁模式挖掘出来后,产生关联规则的步骤还是和Apriori是一样的。

常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth。Apriori通过不断的构造候选集、筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数太多,效率比较低下。FPGrowth不同于Apriori的“试探”策略,算法只需扫描原始数据两遍,通过FP-tree数据结构对原始数据进行压缩,效率较高。

FP代表频繁模式(Frequent Pattern) ,算法主要分为两个步骤:FP-tree构建、挖掘频繁项集。

FP树表示法

FP树通过逐个读入事务,并把事务映射到FP树中的一条路径来构造。由于不同的事务可能会有若干个相同的项,因此它们的路径可能部分重叠。路径相互重叠越多,使用FP树结构获得的压缩效果越好;如果FP树足够小,能够存放在内存中,就可以直接从这个内存中的结构提取频繁项集,而不必重复地扫描存放在硬盘上的数据。

一颗FP树如下图所示:
  在这里插入图片描述
通常,FP树的大小比未压缩的数据小,因为数据的事务常常共享一些共同项,在最好的情况下,所有的事务都具有相同的项集,FP树只包含一条节点路径;当每个事务都具有唯一项集时,导致最坏情况发生,由于事务不包含任何共同项,FP树的大小实际上与原数据的大小一样。

FP树的根节点用φ表示,其余节点包括一个数据项和该数据项在本路径上的支持度;每条路径都是一条训练数据中满足最小支持度的数据项集;FP树还将所有相同项连接成链表,上图中用蓝色连线表示。

为了快速访问树中的相同项,还需要维护一个连接具有相同项的节点的指针列表(headTable),每个列表元素包括:数据项、该项的全局最小支持度、指向FP树中该项链表的表头的指针。
  在这里插入图片描述

构建FP树

现在有如下数据:

在这里插入图片描述

FP-growth算法需要对原始训练集扫描两遍以构建FP树。

第一次扫描,过滤掉所有不满足最小支持度的项;对于满足最小支持度的项,按照全局最小支持度排序,在此基础上,为了处理方便,也可以按照项的关键字再次排序。
在这里插入图片描述

第二次扫描,构造FP树。

参与扫描的是过滤后的数据,如果某个数据项是第一次遇到,则创建该节点,并在headTable中添加一个指向该节点的指针;否则按路径找到该项对应的节点,修改节点信息。具体过程如下所示:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
 从上面可以看出,headTable并不是随着FPTree一起创建,而是在第一次扫描时就已经创建完毕,在创建FPTree时只需要将指针指向相应节点即可。从事务004开始,需要创建节点间的连接,使不同路径上的相同项连接成链表。

实现代码

def loadSimpDat():
    simpDat = [['r', 'z', 'h', 'j', 'p'],
               ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
               ['z'],
               ['r', 'x', 'n', 'o', 's'],
               ['y', 'r', 'x', 'z', 'q', 't', 'p'],
               ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
    return simpDat

def createInitSet(dataSet):
    retDict = {}
    for trans in dataSet:
        fset = frozenset(trans)
        retDict.setdefault(fset, 0)
        retDict[fset] += 1
    return retDict

class treeNode:
    def __init__(self, nameValue, numOccur, parentNode):
        self.name = nameValue
        self.count = numOccur
        self.nodeLink = None
        self.parent = parentNode
        self.children = {}

    def inc(self, numOccur):
        self.count += numOccur

    def disp(self, ind=1):
        print('   ' * ind, self.name, ' ', self.count)
        for child in self.children.values():
            child.disp(ind + 1)


def createTree(dataSet, minSup=1):
    headerTable = {}
    #此一次遍历数据集, 记录每个数据项的支持度
    for trans in dataSet:
        for item in trans:
            headerTable[item] = headerTable.get(item, 0) + 1

    #根据最小支持度过滤
    lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys()))
    for k in lessThanMinsup: del(headerTable[k])

    freqItemSet = set(headerTable.keys())
    #如果所有数据都不满足最小支持度,返回None, None
    if len(freqItemSet) == 0:
        return None, None

    for k in headerTable:
        headerTable[k] = [headerTable[k], None]

    retTree = treeNode('φ', 1, None)
    #第二次遍历数据集,构建fp-tree
    for tranSet, count in dataSet.items():
        #根据最小支持度处理一条训练样本,key:样本中的一个样例,value:该样例的的全局支持度
        localD = {}
        for item in tranSet:
            if item in freqItemSet:
                localD[item] = headerTable[item][0]

        if len(localD) > 0:
            #根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] desc
            orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: (p[1],p[0]), reverse=True)]
            updateTree(orderedItems, retTree, headerTable, count)
    return retTree, headerTable


def updateTree(items, inTree, headerTable, count):
    if items[0] in inTree.children:  # check if orderedItems[0] in retTree.children
        inTree.children[items[0]].inc(count)  # incrament count
    else:  # add items[0] to inTree.children
        inTree.children[items[0]] = treeNode(items[0], count, inTree)
        if headerTable[items[0]][1] == None:  # update header table
            headerTable[items[0]][1] = inTree.children[items[0]]
        else:
            updateHeader(headerTable[items[0]][1], inTree.children[items[0]])

    if len(items) > 1:  # call updateTree() with remaining ordered items
        updateTree(items[1:], inTree.children[items[0]], headerTable, count)


def updateHeader(nodeToTest, targetNode):  # this version does not use recursion
    while (nodeToTest.nodeLink != None):  # Do not use recursion to traverse a linked list!
        nodeToTest = nodeToTest.nodeLink
    nodeToTest.nodeLink = targetNode

simpDat = loadSimpDat()
dictDat = createInitSet(simpDat)
myFPTree,myheader = createTree(dictDat, 3)
myFPTree.disp()

上面的代码在第一次扫描后并没有将每条训练数据过滤后的项排序,而是将排序放在了第二次扫描时,这可以简化代码的复杂度。

控制台信息:

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/327416.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

STM32之OLED显示

一、模块介绍 1、常见的显示设备 LED、数码管、点阵、LCD屏(1602/12864)、OLED屏(消费电子) 2、OLED屏的概述 OLED&#xff0c;即有机发光二极管&#xff08;Organic Light-Emitting Diode&#xff09;&#xff0c;又称为有机电激光显示&#xff08;Organic Electroluminesenc…

IDEA集成Gitee(码云)

文章目录 创建新仓库&#xff0c;存放项目拉取Gitee上的项目 1、安装插件 Idea默认不带码云插件&#xff0c;我们第一步要安装Gitee插件。 如图所示&#xff0c;在Idea插件商店搜索Gitee&#xff0c;然后点击右侧的Install按钮。 2、Settings>Version Conttol>Gitee 这里…

Ubuntu12.0安装g++过程及其报错

Ubuntu12.0安装g过程及其报错 https://blog.csdn.net/weixin_51286763/article/details/120703953 https://blog.csdn.net/dingd1234/article/details/124029945 2.报错二&#xff1a; [41/80] Building CXX object absl/synchronization/CMakeFiles/graphcycles_internal.di…

JVM实战(14)——Young GC调优

作者简介&#xff1a;大家好&#xff0c;我是smart哥&#xff0c;前中兴通讯、美团架构师&#xff0c;现某互联网公司CTO 联系qq&#xff1a;184480602&#xff0c;加我进群&#xff0c;大家一起学习&#xff0c;一起进步&#xff0c;一起对抗互联网寒冬 学习必须往深处挖&…

如何将github copilot当gpt4用

现在写代码已经离不开ai辅助了我用的是github copilot&#xff0c;一方面是因为它和vscode结合得比较好&#xff0c;另一方面就是copilot chat了。可以在不切换工具的情况下&#xff0c;问它问题&#xff0c;在copilot chat还在内测阶段的时候我就申请使用了&#xff08;现在已…

vscode(visual studio code) 免密登陆服务器

1.生成密钥 首先&#xff0c;在本地&#xff0c;打开命令输入框&#xff1a; WinR–>弹出输入框&#xff0c;输入cmd,打开命令框。 然后&#xff0c;在命令框&#xff0c;输入 ssh-keygen -t rsa -C "love"按两次回车键&#xff0c;问你是否重写&#xff0c;选择…

初识XSS漏洞

目录 一、XSS的原理和分类 二、Xss漏洞分类 1. 反射性xss 简单的演示&#xff1a; 2.基于DOM的XSS 简单的演示&#xff1a; 3.存储型XSS ​编辑简单的演示 4、self xss 三、XSS漏洞的危害 四、XSS漏洞的验证 五、XSS漏洞的黑盒测试 六、XSS漏洞的白盒测试 七、XS…

漏洞复现--Likeshop任意文件上传(CVE-2024-0352)

免责声明&#xff1a; 文章中涉及的漏洞均已修复&#xff0c;敏感信息均已做打码处理&#xff0c;文章仅做经验分享用途&#xff0c;切勿当真&#xff0c;未授权的攻击属于非法行为&#xff01;文章中敏感信息均已做多层打马处理。传播、利用本文章所提供的信息而造成的任何直…

有序矩阵中第 K 小的元素

题目链接 有序矩阵中第 K 小的元素 题目描述 注意点 每行和每列元素均按升序排序找到一个内存复杂度优于 O(n) 的解决方案 解答思路 使用二分查找&#xff0c;思路为&#xff1a; &#xff08;1&#xff09;因为左上角的元素值更小&#xff0c;右下角的元素值更大&#xf…

Kafka集群与可靠性

Kafka集群与可靠性 1.Kafka集群搭建实战 使用两台Linux服务器&#xff1a;一台192.168.182.137 一台192.168.182.138 安装kafka首先&#xff0c;我们需要配置java环境变量&#xff08;这里就略过了&#xff09; mkdir /opt/kafka #上传压缩包kafka_2.13-3.3.1.tgz并解压 ta…

Spring高手之路-Spring的AOP失效场景详解

目录 前言 1.非Spring管理的对象 2.同一个Bean内部方法调用 3.静态方法 4.final方法 5.异步方法 总结 前言 Spring的AOP&#xff08;面向切面编程&#xff09;是一种强大的技术&#xff0c;用于在应用程序中实现横切关注点的模块化。虽然Spring的AOP在大多数情况下都是…

Spring Boot - Application Events 的发布顺序_ApplicationFailedEvent

文章目录 Pre概述Code源码分析 Pre Spring Boot - Application Events 的发布顺序_ApplicationEnvironmentPreparedEvent 概述 Spring Boot 的广播机制是基于观察者模式实现的&#xff0c;它允许在 Spring 应用程序中发布和监听事件。这种机制的主要目的是为了实现解耦&#…

MySQL进阶45讲【1】基础架构:一条SQL查询语句是如何执行的?

1 前言 我们经常说&#xff0c;看一个事儿千万不要直接陷入细节里&#xff0c;应该先鸟瞰其全貌&#xff0c;这样能够帮助你从高维度理解问题。同样&#xff0c;对于MySQL的学习也是这样。平时我们使用数据库&#xff0c;看到的通常都是一个整体。比如&#xff0c;有个最简单的…

浅谈敏捷开发的思维

什么是敏捷 Agile&#xff08;敏捷&#xff09;来源于敏捷宣言&#xff0c;宣言明确指出&#xff0c;“敏捷”&#xff1a; 不是一种方法论也不是开发软件的具体方法更不是一个框架或者过程 “敏捷”是一套价值观&#xff08;理念&#xff09;和原则&#xff0c;帮助团队在软…

PVE虚拟机配置文件恢复(qm list不显示虚拟机,web控制台看不到虚拟机)

本文章的目的是故障后复盘&#xff1a; 故障现象在命令行执行qm list不显示虚拟机&#xff0c;web控制台看不到虚拟机&#xff0c;网上查不到相关现象的处理办法。 处理思路&#xff1a;虚拟机还在正常工作&#xff0c;通过查看kvm进程ps aux | grep kvm&#xff0c;百度查看…

产品百度百科怎么创建?产品如何上百度百科?

百度百科作为一个权威的信息平台&#xff0c;承载着巨大的流量和曝光度。对于一个产品来说&#xff0c;能够在百度百科上拥有一席之地&#xff0c;无疑是一种极高的荣誉&#xff0c;同时也是提升品牌知名度、增加信任度的重要手段。产品百度百科不仅能够详细、全面地介绍产品信…

【学习iOS高质量开发】——熟悉Objective-C

文章目录 一、Objective-C的起源1.OC和其它面向对象语言2.OC和C语言3.要点 二、在类的头文件中尽量少引用其他头文件1.OC的文件2.向前声明的好处3.如何正确引入头文件4.要点 三、多用字面量语法&#xff0c;少用与之等价的方法1.何为字面量语法2.字面数值3.字面量数组4.字面量字…

跟着cherno手搓游戏引擎【6】ImGui和ImGui事件

导入ImGui&#xff1a; 下载链接&#xff1a; GitHub - TheCherno/imgui: Dear ImGui: Bloat-free Immediate Mode Graphical User interface for C with minimal dependencies 新建文件夹&#xff0c;把下载好的文件放入对应路径&#xff1a; SRC下的premake5.lua文件&#…

算法通关村番外篇-LeetCode编程从0到1系列四

大家好我是苏麟 , 今天带来算法通关村番外篇-LeetCode编程从0到1系列四 . 矩阵 1672. 最富有客户的资产总量 描述 : 给你一个 m x n 的整数网格 accounts &#xff0c;其中 accounts[i][j] 是第 i​​​​​ 位客户在第 j 家银行托管的资产数量。返回最富有客户所拥有的 资产…

书客Sun立式护眼台灯正式上市,技术优势全面领跑,革新行业的护眼养眼!

在当今智能化的社会&#xff0c;我们与电子屏幕的接触日益增多&#xff0c;同时&#xff0c;无需离开家门即可享受各种便捷服务。由于过度使用电子设备、与阳光的接触机会逐渐减少或其他不合理的用眼习惯导致近视问题不断加剧。 作为专业的护眼品牌&#xff0c;SUKER书客深刻认…