HDFS和MapReduce综合实训

文章目录

  • 第1关:WordCount词频统计
    • 第2关:HDFS文件读写
    • 第3关:倒排索引
    • 第4关: 网页排序——PageRank算法


第1关:WordCount词频统计

测试说明
以下是测试样例:

测试输入样例数据集:文本文档test1.txt和test2.txt

文档test1.txt中的内容为:
tale as old as time
true as it can be
beauty and the beast

文档test2.txt中的内容为:
ever just the same
ever as before
beauty and the beast

预期输出result.txt文档中的内容为:
and 2
as 4
beast 2
beauty 2
before 1
can 1
ever 2
it 1
just 1
old 1
same 1
tale 1
the 3
time 1
true 1

import java.io.IOException;
import java.util.StringTokenizer;
 
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
 
public class WordCount {
 
  public static class TokenizerMapper 
       extends Mapper<Object, Text, Text, IntWritable>{
 
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();
 
    public void map(Object key, Text value, Context context
                    ) throws IOException, InterruptedException {
      StringTokenizer itr = new StringTokenizer(value.toString());
      while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());
        context.write(word, one);
      }
    }
  }
 
  public static class IntSumReducer 
       extends Reducer<Text,IntWritable,Text,IntWritable> {
    private IntWritable result = new IntWritable();
 
    public void reduce(Text key, Iterable<IntWritable> values, 
                       Context context
                       ) throws IOException, InterruptedException {
      int sum = 0;
      for (IntWritable val : values) {
        sum += val.get();
      }
      result.set(sum);
      context.write(key, result);
    }
  }
 
  public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
    if (otherArgs.length != 2) {
      System.err.println("Usage: wordcount <in> <out>");
      System.exit(2);
    }
    Job job = new Job(conf, "word count");
    job.setJarByClass(WordCount.class);
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}

在这里插入图片描述

第2关:HDFS文件读写

编程要求
本关的编程任务是补全右侧代码片段中的代码,具体要求及说明如下:

在主函数main中已获取hadoop的系统设置,并在其中创建HDFS文件。在main函数中,指定创建文档路径(必须设置为/user/hadoop/myfile才能评测),输入内容必须是本关要求内容才能评测。
添加读取文件输出部分
本关只要求在指定区域进行代码编写,其他区域仅供参考请勿改动。
测试说明
本关无测试样例,直接比较文件内容确定输出是否为“china cstor cstor cstor china”

import java.io.IOException;
import java.sql.Date;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
public class hdfs {
    public static void main(String[] args) throws IOException {
        Configuration conf = new Configuration();
        FileSystem fs = FileSystem.get(conf);
            System.out.println(fs.getUri());
        Path file = new Path("/user/hadoop/myfile");
        if (fs.exists(file)) {
             System.out.println("File exists.");
        } else
            {
           FSDataOutputStream outStream = fs.create(file);
           outStream.writeUTF("china cstor cstor cstor china");
         outStream.close();
        }
        FSDataInputStream inStream = fs.open(file);
        String data = inStream.readUTF();
        FileSystem hdfs = file.getFileSystem(conf);
        FileStatus[] fileStatus = hdfs.listStatus(file);
        for(FileStatus status:fileStatus)
        {
           System.out.println("FileOwer:"+status.getOwner());
           System.out.println("FileReplication:"+status.getReplication());
           System.out.println("FileModificationTime:"+new Date(status.getModificationTime()));
           System.out.println("FileBlockSize:"+status.getBlockSize());
        }
        System.out.println(data);
        System.out.println("Filename:"+file.getName());
        inStream.close();
        fs.close();
    }
}

在这里插入图片描述

第3关:倒排索引

编程要求
本关的编程任务是补全右侧代码片段中map和reduce函数中的代码,具体要求及说明如下:

在主函数main中已初始化hadoop的系统设置,包括hadoop运行环境的连接。
在main函数中,已经设置好了待处理文档路径(即input),以及结果输出路径(即output)。
在main函数中,已经声明了job对象,程序运行的工作调度已经设定好。
本关只要求在map和reduce函数的指定区域进行代码编写,其他区域请勿改动。
测试说明
测试输入样例数据集:文本文档test1.txt, test2.txt
在这里插入图片描述

文档test1.txt中的内容为:

tale as old as time
true as it can be
beauty and the beast

文档test2.txt中的内容为:

ever just the same
ever as before
beauty and the beast

预期输出文件result.txt的内容为:

import java.io.IOException;
import java.util.HashMap;
import java.util.Hashtable;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import java.util.Iterator;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.util.GenericOptionsParser;
public class InvertedIndex {
    public static class InvertedIndexMapper extends Mapper<LongWritable, Text, Text, Text> 
    {
        public void map(LongWritable key, Text value, Context context)  
                throws IOException, InterruptedException 
         
        {    
            FileSplit fileSplit = (FileSplit)context.getInputSplit();
            String fileName = fileSplit.getPath().getName();
            
            String word;
            IntWritable frequence=new IntWritable();
            int one=1;
            Hashtable<String,Integer>    hashmap=new Hashtable();
            StringTokenizer itr = new StringTokenizer(value.toString());
            for(;itr.hasMoreTokens(); ) 
            {   
                
                word=itr.nextToken();
                if(hashmap.containsKey(word)){
                    hashmap.put(word,hashmap.get(word)+1);
                }else{
                    hashmap.put(word, one);
                
                }
            
            }
            
            for(Iterator<String> it=hashmap.keySet().iterator();it.hasNext();){
                word=it.next();
                frequence=new IntWritable(hashmap.get(word));
                Text fileName_frequence = new Text(fileName+"@"+frequence.toString());    
                context.write(new Text(word),fileName_frequence);
            }
            
        }
    }
    public static class InvertedIndexCombiner extends Reducer<Text,Text,Text,Text>{
        protected void reduce(Text key,Iterable<Text> values,Context context)
                        throws IOException ,InterruptedException{ 
         
            String fileName="";
            int sum=0;
            String num;
            String s;
            for (Text val : values) {
                    
                    s= val.toString();
                    fileName=s.substring(0, val.find("@"));
                    num=s.substring(val.find("@")+1, val.getLength());
                    sum+=Integer.parseInt(num);
            }
        IntWritable frequence=new IntWritable(sum);
        context.write(key,new Text(fileName+"@"+frequence.toString()));
        }
    }
    
    public static class InvertedIndexReducer extends Reducer<Text, Text, Text, Text> 
    {    @Override
        protected void reduce(Text key, Iterable<Text> values, Context context)
                throws IOException, InterruptedException 
         {    Iterator<Text> it = values.iterator();
            StringBuilder all = new StringBuilder();
            if(it.hasNext())  all.append(it.next().toString());
            for(;it.hasNext();) {
                all.append(";");
                all.append(it.next().toString());                    
            }
            context.write(key, new Text(all.toString()));
        }
    }
    public static void main(String[] args) 
    {
        if(args.length!=2){
            System.err.println("Usage: InvertedIndex <in> <out>");
            System.exit(2);
        }
        
      try {
                Configuration conf = new Configuration();
                String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
                
                Job job = new Job(conf, "invertedindex");
                job.setJarByClass(InvertedIndex.class);
                job.setMapperClass(InvertedIndexMapper.class);
                job.setCombinerClass(InvertedIndexCombiner.class);
                job.setReducerClass(InvertedIndexReducer.class);
                
                job.setOutputKeyClass(Text.class);
                job.setOutputValueClass(Text.class);
                
                FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
                FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
                
                System.exit(job.waitForCompletion(true) ? 0 : 1);
     
        } catch (Exception e) { 
            e.printStackTrace();
        }
    }
}

在这里插入图片描述

第4关: 网页排序——PageRank算法

测试说明
输入文件格式如下:
1 1.0 2 3 4 5 6 7 8
2 2.0 3 4 5 6 7 8
3 3.0 4 5 6 7 8
4 4.0 5 6 7 8
5 5.0 6 7 8
6 6.0 7 8
7 7.0 8
8 8.0 1 2 3 4 5 6 7

注:为了简化运算,已经对网页集关系进行了规整,并且给出了相应的初始PR值。
以第一行为例: 1表示网址(以tab键隔开),1.0为给予的初始pr值,2,3,4,5,6,7,8为从网址1指向的网址。
输出文件格式:
The origin result
1 1.0 2 3 4 5 6 7 8
2 2.0 3 4 5 6 7 8
3 3.0 4 5 6 7 8
4 4.0 5 6 7 8
5 5.0 6 7 8
6 6.0 7 8
7 7.0 8
8 8.0 1 2 3 4 5 6 7
The 1th result
1 0.150 1.121 _2 3 4 5 6 7 8
2 0.150 1.243 _3 4 5 6 7 8
3 0.150 1.526 _4 5 6 7 8
4 0.150 2.036 _5 6 7 8
5 0.150 2.886 _6 7 8
6 0.150 4.303 _7 8
7 0.150 6.853 _8
8 0.150 11.831 _1 2 3 4 5 6 7
The 2th result
1 0.150 1.587 _2 3 4 5 6 7 8
2 0.150 1.723 _3 4 5 6 7 8
3 0.150 1.899 _4 5 6 7 8
4 0.150 2.158 _5 6 7 8
5 0.150 2.591 _6 7 8
6 0.150 3.409 _7 8
7 0.150 5.237 _8
8 0.150 9.626 _1 2 3 4 5 6 7
The 3th result
1 0.150 1.319 _2 3 4 5 6 7 8
2 0.150 1.512 _3 4 5 6 7 8
3 0.150 1.756 _4 5 6 7 8
4 0.150 2.079 _5 6 7 8
5 0.150 2.537 _6 7 8
6 0.150 3.271 _7 8
7 0.150 4.720 _8
8 0.150 8.003 _1 2 3 4 5 6 7
The 4th result
1 0.150 1.122 _2 3 4 5 6 7 8
2 0.150 1.282 _3 4 5 6 7 8
3 0.150 1.496 _4 5 6 7 8
4 0.150 1.795 _5 6 7 8
5 0.150 2.236 _6 7 8
6 0.150 2.955 _7 8
7 0.150 4.345 _8
8 0.150 7.386 _1 2 3 4 5 6 7
The 5th result
1 0.150 1.047 _2 3 4 5 6 7 8
2 0.150 1.183 _3 4 5 6 7 8
3 0.150 1.365 _4 5 6 7 8
4 0.150 1.619 _5 6 7 8
5 0.150 2.000 _6 7 8
6 0.150 2.634 _7 8
7 0.150 3.890 _8
8 0.150 6.686 _1 2 3 4 5 6 7

import java.io.IOException;
import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.StringTokenizer;
import java.util.Iterator;
 
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
 
public class PageRank {
 
  public static class MyMapper   extends Mapper<Object, Text, Text, Text>
  {
        private Text id = new Text();
        public void map(Object key, Text value, Context context ) throws IOException, InterruptedException
        {
            String line = value.toString();
//判断是否为输入文件
            if(line.substring(0,1).matches("[0-9]{1}"))
            {
                  boolean flag = false;
                  if(line.contains("_"))
                  {
                        line = line.replace("_","");
                        flag = true;
                  }
//对输入文件进行处理
                  String[] values = line.split("\t");
                  Text t = new Text(values[0]);
                  String[] vals = values[1].split(" ");
                  String url="_";//保存url,用作下次计算
                  double pr = 0;
                  int i = 0;
                  int num = 0;
 
                  if(flag)
                  {
                      i=2;
                      pr=Double.valueOf(vals[1]);
                      num=vals.length-2;
                  }
                  else
                  {
                      i=1;
                      pr=Double.valueOf(vals[0]);
                      num=vals.length-1;
                  }
 
                  for(;i<vals.length;i++)
                  {
                      url=url+vals[i]+" ";
                      id.set(vals[i]);
                      Text prt = new Text(String.valueOf(pr/num));
                      context.write(id,prt);
                  }
                  context.write(t,new Text(url));
              }
          }
  }
 
  public static class MyReducer  extends Reducer<Text,Text,Text,Text>
  {
              private Text result = new Text();
              private Double pr = new Double(0);
 
         public void reduce(Text key, Iterable<Text> values,  Context context  ) throws IOException, InterruptedException
         {
              double sum=0;
              String url="";
 
//****请通过url判断否则是外链pr,作计算前预处理****//
/*********begin*********/
  for(Text val:values)  
              {  
                      //发现_标记则表明是url,否则是外链pr,要参与计算  
                  if(!val.toString().contains("_"))  
                  {  
                      sum=sum+Double.valueOf(val.toString());  
                  }  
                  else  
                 {  
                      url=val.toString();  
                  }  
              }  
              pr=0.15+0.85*sum;  
              String str=String.format("%.3f",pr);  
              result.set(new Text(str+" "+url));  
              context.write(key,result);  
 
 
/*********end**********/            
 
 
//****请补全用完整PageRank计算公式计算输出过程,q取0.85****//
/*********begin*********/
 
 
/*********end**********/    
 
          }
 }
 
    public static void main(String[] args) throws Exception
    {
             String paths="file:///tmp/input/Wiki0";//输入文件路径,不要改动
            String path1=paths;
            String path2="";
 
            for(int i=1;i<=5;i++)//迭代5次
              {
                System.out.println("This is the "+i+"th job!");
                System.out.println("path1:"+path1);
                System.out.println("path2:"+path2);
                Configuration conf = new Configuration();
                Job job = new Job(conf, "PageRank");
                path2=paths+i;    
                job.setJarByClass(PageRank.class);
                job.setMapperClass(MyMapper.class);
        //****请为job设置Combiner类****//
/*********begin*********/
job.setCombinerClass(MyReducer.class); 
 
/*********end**********/                    
                job.setReducerClass(MyReducer.class);
                job.setOutputKeyClass(Text.class);
                job.setOutputValueClass(Text.class);
                FileInputFormat.addInputPath(job, new Path(path1));
                FileOutputFormat.setOutputPath(job, new Path(path2));
                path1=path2;      
             job.waitForCompletion(true);
            System.out.println(i+"th end!");
        }
      } 
 }

在这里插入图片描述


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/324467.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

上下左右视频转场模板PR项目工程文件 Vol. 05

pr转场模板&#xff0c;视频画面上下左右转场后带有一点点回弹效果的PR项目工程模板 Vol. 05 项目特点&#xff1a; 回弹效果视频转场&#xff1b; Premiere Pro 2020及以上&#xff1b; 适用于照片和视频转场&#xff1b; 适用于任何FPS和分辨率&#xff1b; 视频教程。 PR转场…

从0开始学Git指令(3)

从0开始学Git指令 因为网上的git文章优劣难评&#xff0c;大部分没有实操展示&#xff0c;所以打算自己从头整理一份完整的git实战教程&#xff0c;希望对大家能够起到帮助&#xff01; 远程仓库 Git是分布式版本控制系统&#xff0c;同一个Git仓库&#xff0c;可以分布到不…

训练官方源码RT-DETR(血泪的教训!严格按照官方流程!)

文章目录 参考链接1 配置环境2 配置数据路径3 配置训练参数4 可能的报错AttributeError: module torchvision has no attribute disable_beta_transforms_warning 参考链接 源码&#xff1a;https://github.com/lyuwenyu/RT-DETR详解RT-DETR网络结构/数据集获取/环境搭建/训练…

22.实战演练--记住密码和登录状态

在登录注册案例的基础上&#xff0c;实现一个相对完整的登录注册模块 (1).记住密码 (2).记住登录状态&#xff08;自动登录&#xff09; (3).注册成功&#xff0c;登录成功&#xff0c;退出登录时的页面跳转

【JavaScript】多种实现文件下载的工具类

【JavaScript】多种实现文件下载的工具类 方法一方法二方法三整体调用代码异常处理 示例以下载txt文件为例&#xff0c;代码已封装上传&#xff0c;可直接下载资源在服务器中使用。如有异常&#xff0c;可查看“异常处理”小节或评论区指出。 方法一 在html中&#xff0c;可以…

java中String的两种创建方法、字符串常量池

java中String的两种创建方法 字符串常量池 字符串常量池 String的两种创建方式: 第一种方式是在常量池中获取字符串对象。第二种方式是直接在堆空间创建一个新的字符串对象。 //先检查字符串常量池中有没有“apesource”,如果字符产常量池中没有&#xff0c;则创建一个&#x…

测绘资质工程测量乙级资质办理条件

新测绘资质分为10个专业&#xff1a; 1.大地测量 2.测绘航空摄影 3.摄影测量与遥感 4.工程测量 5.海洋测绘 6.界线与不动产测绘 7.地理信息系统工程 8.地图编制 9.导航电子地图制作 10.互联网地图服务。 新《测绘资质管理办法》和《测绘资质分类分级标准》&#xff…

【linux】查看Debian应用程序图标对应的可执行命令

在Debian系统中&#xff0c;应用程序图标通常与.desktop文件关联。您可以通过查看.desktop文件来找到对应的可执行命令。这些文件通常位于/usr/share/applications/或~/.local/share/applications/目录下。这里是如何查找的步骤&#xff1a; 1. 打开文件管理器或终端。 2. 导…

Windows下python用ctypes调用C++程序的动态链接库方法(vs2019)

Windows下python用ctypes调用C程序的动态链接库方法&#xff08;vs2019&#xff09; https://blog.csdn.net/qq_34288751/article/details/121939189 https://blog.csdn.net/iambinglan1/article/details/133790822

​HDD回暖于2024,与SSD决战于2028--part1

去年小编曾表达过类似观点&#xff0c;市场留给HDD的时间已经不多了&#xff0c;未来5年的发展决定了HDD的最终命运。 扩展阅读&#xff1a;HDD最后的冲刺&#xff1a;大容量硬盘的奋力一搏 SSD以其高速度和低延迟等优点&#xff0c;尤其在容量增长和每GB成本降低方面&#x…

基于Ubuntu22.04部署生产级K8S集群v1.27(规划和核心组件部署篇)

本文档主要根据k8s官网文档和其插件的官网文档&#xff0c;参考部分他人优秀经验&#xff0c;在实际操作中逐渐完成&#xff0c;比较详尽&#xff0c;适合在境内学习者和实践者参考。 实操环境基于VMware Workstation 17 pro&#xff0c;采用ubuntu22.04操作系统&#xff08;有…

【JAVA-打包jar】jar不能双击运行,Jar包找不到主类

我的问题比较简单&#xff0c;搞了一下午&#xff0c;查阅了很多教程&#xff0c;无意发现&#xff0c;居然是 jdk过期需要更新&#xff01; 气的吐血&#xff01; 所以不要废话&#xff0c;首先检查自己的环境变量和JDK&#xff01;&#xff01;&#xff01; 环境变量&…

STC8H8K蓝牙智能巡线小车——2. 点亮左右转弯灯与危险报警灯

任务调用示例 RTX 51 TNY 可做多任务调度&#xff0c;API较为简单。 /* 接口API */// 创建任务 extern unsigned char os_create_task (unsigned char task_id); // 结束任务 extern unsigned char os_delete_task (unsigned char task_id);// 等待 extern unsig…

MySQL 协议(非常详细适合小白学习)

MySQL 查询过程 MySQL 查询过程大致如下&#xff1a; 1&#xff09;客户端与服务器端建立连接&#xff1b; 2&#xff09;客户端登陆 MySQL&#xff1b; 3&#xff09;客户端向服务器端发起一条请求&#xff1b; 4&#xff09;服务器端先检查查询缓存&#xff0c;如果命中缓…

uniapp 权限申请插件(权限使用说明) Ba-Permissions

简介&#xff08;下载地址&#xff09; Ba-Permissions 是一款权限申请插件&#xff0c;支持权限使用说明弹窗&#xff0c;满足市场审核需求。支持自定义权限申请&#xff0c;也支持快速申请定位、相机、媒体、文件、悬浮窗等常见权限。 支持权限使用说明弹窗&#xff0c;满足…

new mars3d.graphic.PolygonEntity({计算平面几何中心点及贴地效果展示

1.Mars3d提供了几何图形相关点位的计算方法polyutil&#xff1a; PolyUtil - V3.7.0 - Mars3D API文档 2.通过api可以算出相关经纬度坐标&#xff0c;实现相关中心点的展示 &#xff1a; 功能示例(Vue版) | Mars3D三维可视化平台 | 火星科技 3.相关实现代码&#xff1a; fu…

【例7.5】 取余运算(mod) 快速幂

1326&#xff1a;【例7.5】 取余运算&#xff08;mod&#xff09; 时间限制: 1000 ms 内存限制: 65536 KB 【题目描述】 输入b&#xff0c;p&#xff0c;k的值&#xff0c;求bpmodk 的值。其中b&#xff0c;p&#xff0c;kk为长整型数。 【输入】 输入b&#xff0c;p&#xf…

Python 基础【八】--数据类型-字典【2024.1.11】

1.定义 字典的内容在花括号 {} 内&#xff0c;键-值&#xff08;key-value&#xff09;之间用冒号 : 分隔&#xff0c;键值对之间用逗号 , 分隔&#xff0c;比如创建字典 &#xff0c;如下所示&#xff1a; d{name:小明,age:18}# 使用 dict 函数&#xff1a;强转 # 方式一&am…

YOLOv8训练自己的数据集

文章目录 1. 创建数据集文件结构数据集标注脚本分割数据集转换数据格式 2. 配置文件2.1 数据集配置2.2 选择需要的模型 3. 模型训练4. 测试 1. 创建数据集 环境&#xff1a; Ultralytics YOLOv8.0.230 &#x1f680; Python-3.8.18 torch-2.3.0.dev20231226cu118 CUDA:0 (NVIDI…

Python基础知识:整理10 异常相关知识

1 异常的捕获 1.1 基础写法 """基本语法&#xff1a;try:可能发生错误的代码except:如果出现异常&#xff0c;将执行的代码""" try:fr open("D:/abc.txt", "r", encoding"utf-8") except:print("出现异常…