文章目录
- 1. 创建数据集
- 文件结构
- 数据集标注
- 脚本分割数据集
- 转换数据格式
- 2. 配置文件
- 2.1 数据集配置
- 2.2 选择需要的模型
- 3. 模型训练
- 4. 测试
1. 创建数据集
- 环境:
Ultralytics YOLOv8.0.230 🚀
Python-3.8.18
torch-2.3.0.dev20231226+cu118 CUDA:0
(NVIDIA GeForce RTX 3060 Laptop GPU, 6144MiB)
文件结构
- mydata
– dataSet # 保存自动生成train.txt,val.txt,test.txt和trainval.txt四个文件,存放训练集、验证集、测试集图片的名字
– images # 存放待训练的图片
– labels # 标注工具生成文件
– xml # 存放图片的xml文件
– run # 训练结果
split_train_val.py
# 分割数据集的脚本
voc_label.py
# 转换成yolo_txt格式,供yolo训练
数据集标注
采用labelImg
工具进行标注,网上可以直接搜到
- open dir: 选择images文件夹
- change save dir: 选择labels文件夹
- create rectbox: 进行框选
- save: 保存
脚本分割数据集
脚本分割训练集、验证集、测试集split_train_val.py
代码如下:
# coding:utf-8
import os
import random
import argparse
parser = argparse.ArgumentParser()
# xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='xml', type=str, help='input xml label path')
# 数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='dataSet', type=str, help='output txt label path')
opt = parser.parse_args()
trainval_percent = 1.0
train_percent = 0.9
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):
os.makedirs(txtsavepath)
num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)
file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')
for i in list_index:
name = total_xml[i][:-4] + '\n'
if i in trainval:
file_trainval.write(name)
if i in train:
file_train.write(name)
else:
file_val.write(name)
else:
file_test.write(name)
file_trainval.close()
file_train.close()
file_val.close()
file_test.close()
运行代码后,在dataSet 文件夹下生成下面四个txt文档:
转换数据格式
将labelImage
标注的xml文件转化为yolov8训练所需要的yolo_txt格式。即将每个xml标注提取bbox信息为txt格式,每个图像对应一个txt文件,文件每一行为一个目标的信息,包括class, x_center, y_center, width, height格式。
yolo_txt的格式如下:
创建voc_label.py
文件,将训练集、验证集、测试集生成label标签(训练中要用到),同时将数据集路径导入txt文件中。
这里出现问题基本都是文件路径设置的不对,可以自行检查下
代码内容如下:
# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwd
sets = ['train', 'val', 'test']
classes = ["receiver", "laser"] # 改成自己的类别
abs_path = os.getcwd()
print(abs_path)
def convert(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = (box[0] + box[1]) / 2.0 - 1
y = (box[2] + box[3]) / 2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return x, y, w, h
def convert_annotation(image_id):
in_file = open('xml/%s.xml' % (image_id), encoding='UTF-8')
out_file = open('labels/%s.txt' % (image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
#difficult = obj.find('Difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
b1, b2, b3, b4 = b
# 标注越界修正
if b2 > w:
b2 = w
if b4 > h:
b4 = h
b = (b1, b2, b3, b4)
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
for image_set in sets:
if not os.path.exists('labels/'):
os.makedirs('labels/')
image_ids = open('dataSet/%s.txt' % (image_set)).read().strip().split()
list_file = open('paper_data/%s.txt' % (image_set), 'w')
for image_id in image_ids:
list_file.write(abs_path + '/images/%s.jpg\n' % (image_id))
convert_annotation(image_id)
list_file.close()
2. 配置文件
2.1 数据集配置
在mydata文件夹下新建一个mydata.yaml文件,用来存放训练集和验证集的划分文件(train.txt和val.txt)。
这两个文件是通过运行voc_label.py代码生成的,然后是目标的类别数目和具体类别列表。
这里最好用绝对路径,我用相对路径报错了不知为什么。
mydata.yaml
内容如下:
2.2 选择需要的模型
在ultralytics/models/v8/目录下是模型的配置文件,这边提供s、m、l、x版本,逐渐增大(随着架构的增大,训练时间也是逐渐增大).
假设采用yolov8m.yaml,只用修改一个参数,把nc改成自己的类别数,需要取整(可选) 如下:
3. 模型训练
在YOLOv8的GitHub开源网址上下载对应版本的模型:
https://github.com/ultralytics/assets/releases
接下来就可以开始训练模型了,我的显卡只有6G显存,所以用的m模型,batch也只开到8。具体命令如下:
yolo task=detect mode=train model=yolov8m.yaml data=mydata.yaml epochs=1000 batch=8
以上参数解释如下:
- task:选择任务类型,可选[‘detect’, ‘segment’, ‘classify’, ‘init’]
- mode: 选择是训练、验证还是预测的任务蕾西 可选[‘train’, ‘val’, ‘predict’]
- model: 选择yolov8不同的模型配置文件,可选yolov8s.yaml、yolov8m.yaml、yolov8l.yaml、yolov8x.yaml
- data: 选择生成的数据集配置文件
- epochs:指的就是训练过程中整个数据集将被迭代多少次,显卡不行你就调小点。
- batch:一次看完多少张图片才进行权重更新,梯度下降的mini-batch,显卡不行你就调小点。
训练过程如下所示:
训练差不多了会提前结束,并保存最好的模型
4. 测试
可以直接用电脑摄像头测,放个代码
import cv2
import sys
import time
import numpy as np
from ultralytics import YOLO
# 加载模型
model = YOLO('path/to/best.pt') # 载入自定义模型
# 视频路径
#video_path = 'test.mp4'
video_path = ""
cap = cv2.VideoCapture(0) # 更改数字,切换不同的摄像头
# loop
while cap.isOpened():
success, frame = cap.read()
if success:
start = time.perf_counter()
# Run YOLOv8 inference on the frame
results = model(frame)
end = time.perf_counter()
total_time = end - start
fps = 1 / total_time
# visualize the results on the frame
annotated_frame = results[0].plot()
# display the annotated frame
cv2.imshow("YOLOv8 Inference:", annotated_frame)
# Break the loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
# Break the loop if the end of the video is reached
break
# Release the video capture object and close the display windows
cap.release()
cv2.destroyAllWindows()
'''
# 检测视频
results = model.track(source=video_path, conf=0.75, show=True, save=True) # 这里只框选置信度0.75以上的目标
'''