Day30 78子集 90子集II 491非递减子序列

78 子集

给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。

说明:解集不能包含重复的子集。

示例: 输入: nums = [1,2,3] 输出: [ [3],   [1],   [2],   [1,2,3],   [1,3],   [2,3],   [1,2],   [] ]

        注意本题与之前所有回溯算法所不同的一点就是,之前都是在叶子节点返回结果,而求子集需要在所有节点返回结果。同时这个终止条件可写可不写。

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& nums, int startIndex) {
        result.push_back(path);
        if(startIndex == nums.size()) {
            return;
        }
        for(int i = startIndex; i < nums.size(); i++) {
            path.push_back(nums[i]);
            backtracking(nums, i+1);
            path.pop_back();
        }
    }
public:
    vector<vector<int>> subsets(vector<int>& nums) {
        result.clear();
        path.clear();
        backtracking(nums,0);
        return result;
    }
};

 90 子集II

 

给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。

说明:解集不能包含重复的子集。

示例:

  • 输入: [1,2,2]
  • 输出: [ [2], [1], [1,2,2], [2,2], [1,2], [] ]

 

        本题是上一题和组合总和II的结合题,需要注意以下几点:终止条件可以不写,最后因为for循环一定都会终止;每次递归都返回结果,并不仅仅是叶子节点;注意树层去重和树枝去重的区别,本题要求树层去重才会直接continue;在回溯之前要现将nums排序才行。

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& nums, int startIndex, vector<bool>& used) {
        result.push_back(path);
        for (int i = startIndex; i < nums.size(); i++) {
            // used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
            // used[i - 1] == false,说明同一树层candidates[i - 1]使用过
            // 而我们要对同一树层使用过的元素进行跳过
            if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
                continue;
            }
            path.push_back(nums[i]);
            used[i] = true;
            backtracking(nums, i + 1, used);
            used[i] = false;
            path.pop_back();
        }
    }

public:
    vector<vector<int>> subsetsWithDup(vector<int>& nums) {
        result.clear();
        path.clear();
        vector<bool> used(nums.size(), false);
        sort(nums.begin(), nums.end()); // 去重需要排序
        backtracking(nums, 0, used);
        return result;
    }
};

         set去重版本:同样也是树层去重,因为如果经历过递归以后不算重复,只有for循环的时候才算重复(树层去重)

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& nums, int startIndex) {
        result.push_back(path);
        unordered_set<int> uset; //去重集合
        for (int i = startIndex; i < nums.size(); i++) {
            if (uset.find(nums[i]) != uset.end()) { //如果集合里面有了这个元素,说明重复
                continue;
            }
            uset.insert(nums[i]); //每次插入一个进入集合里面
            path.push_back(nums[i]);
            backtracking(nums, i + 1);
            path.pop_back();
        }
    }

public:
    vector<vector<int>> subsetsWithDup(vector<int>& nums) {
        result.clear();
        path.clear();
        sort(nums.begin(), nums.end()); // 去重需要排序
        backtracking(nums, 0);
        return result;
    }
};

 startIndex:

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& nums, int startIndex) {
        result.push_back(path);
        for (int i = startIndex; i < nums.size(); i++) {
            // 而我们要对同一树层使用过的元素进行跳过
            if (i > startIndex && nums[i] == nums[i - 1] ) { // 注意这里使用i > startIndex
                continue;
            }
            path.push_back(nums[i]);
            backtracking(nums, i + 1);
            path.pop_back();
        }
    }

public:
    vector<vector<int>> subsetsWithDup(vector<int>& nums) {
        result.clear();
        path.clear();
        sort(nums.begin(), nums.end()); // 去重需要排序
        backtracking(nums, 0);
        return result;
    }
};

 491 非递减子序列

给定一个整型数组, 你的任务是找到所有该数组的递增子序列,递增子序列的长度至少是2。

示例:

  • 输入: [4, 6, 7, 7]
  • 输出: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7, 7], [7,7], [4,7,7]]

说明:

  • 给定数组的长度不会超过15。
  • 数组中的整数范围是 [-100,100]。
  • 给定数组中可能包含重复数字,相等的数字应该被视为递增的一种情况。

        本题同样需要去重,同时加了递增,并且不能排序,所以不能使用used数组的方法了,于是用set来进行去重:注意每层里面都有一个set维护,他只负责自己这一层的。

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& nums, int startIndex) {
        if (path.size() > 1) {
            result.push_back(path);
            // 注意这里不要加return,要取树上的节点
        }
        unordered_set<int> uset; // 使用set对本层元素进行去重
        for (int i = startIndex; i < nums.size(); i++) {
            if ((!path.empty() && nums[i] < path.back())
                    || uset.find(nums[i]) != uset.end()) {
                    continue;
            }
            uset.insert(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了
            path.push_back(nums[i]);
            backtracking(nums, i + 1);
            path.pop_back();
        }
    }
public:
    vector<vector<int>> findSubsequences(vector<int>& nums) {
        result.clear();
        path.clear();
        backtracking(nums, 0);
        return result;
    }
};

以上代码用我用了unordered_set<int>来记录本层元素是否重复使用。

其实用数组来做哈希,效率就高了很多

注意题目中说了,数值范围[-100,100],所以完全可以用数组来做哈希。

程序运行的时候对unordered_set 频繁的insert,unordered_set需要做哈希映射(也就是把key通过hash function映射为唯一的哈希值)相对费时间,而且每次重新定义set,insert的时候其底层的符号表也要做相应的扩充,也是费事的。

那么优化后的代码如下:nums[i] + 100保证方括号里的值永远大于等于0

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& nums, int startIndex) {
        if (path.size() > 1) {
            result.push_back(path);
        }
        int used[201] = {0}; // 这里使用数组来进行去重操作,题目说数值范围[-100, 100]
        for (int i = startIndex; i < nums.size(); i++) {
            if ((!path.empty() && nums[i] < path.back())
                    || used[nums[i] + 100] == 1) {
                    continue;
            }
            used[nums[i] + 100] = 1; // 记录这个元素在本层用过了,本层后面不能再用了
            path.push_back(nums[i]);
            backtracking(nums, i + 1);
            path.pop_back();
        }
    }
public:
    vector<vector<int>> findSubsequences(vector<int>& nums) {
        result.clear();
        path.clear();
        backtracking(nums, 0);
        return result;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/324103.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Spring Boot异常处理

自定义错误页面 SpringBoot默认的处理异常的机制&#xff1a;SpringBoot 默认的已经提供了一套处理异常的机制。一旦程序中出现了异常 SpringBoot 会向/error 的 url 发送请求。在 springBoot 中提供了一个叫 BasicErrorController 来处理/error 请求&#xff0c;然后跳转到默认…

RK3568笔记九: DRM显示摄像头

若该文为原创文章&#xff0c;转载请注明原文出处。 一、介绍 学习DRM的目的是想做类似NVR显示多路实时流&#xff0c;通过勇哥&#xff08;Marc)的指导&#xff0c;大概流程是通过Zlmedia拉流&#xff0c;RK3568的MPP解码,DRM显示&#xff0c;可以使用HDMI或DIS屏幕&#xf…

jmeter--5.断言

目录 1. 响应断言 1.1 添加断言 1.2 名词解释 断言失败显示示例 2. json断言 2.1 添加断言 2.2 名词解释 断言失败显示示例 2.3 json断言应用 3. beanshell断言 3.1 添加断言 3.2 原理 断言失败显示示例 1. 响应断言 1.1 添加断言 线程组->添加->断言->…

Zynq7020 使用 Video Processing Subsystem 实现图像缩放

1、前言 没玩过图像缩放都不好意思说自己玩儿过FPGA&#xff0c;这是CSDN某大佬说过的一句话&#xff0c;鄙人深信不疑。。。 目前市面上主流的FPGA图像缩放方案如下&#xff1a;1&#xff1a;Xilinx的HLS方案&#xff0c;该方案简单&#xff0c;易于实现&#xff0c;但只能用…

【闯关练习】—— 1400分(构造)

&#x1f30f;博客主页&#xff1a;PH_modest的博客主页 &#x1f6a9;当前专栏&#xff1a;cf闯关练习 &#x1f48c;其他专栏&#xff1a; &#x1f534;每日一题 &#x1f7e1; C跬步积累 &#x1f7e2; C语言跬步积累 &#x1f308;座右铭&#xff1a;广积粮&#xff0c;缓…

为什么很多人不看好鸿蒙?轻舟已过万重山

其实这个争议存在很久了。但是到2023年9月份开始&#xff0c;华为秋季发布会上宣布了“鸿蒙不再兼容Android”当时就已经炸开了锅。这个消息让很多不看好鸿蒙的人都闭上了嘴。我们作为国人应该支持自己的操作系统。 鸿蒙4.0&#xff0c;轻舟已过万重山&#xff01; 鸿蒙Harmo…

一致性协议浅析

Paxos 简介 Paxos 发明者是大名鼎鼎的 Lesile Lamport。Lamport 虚拟了一个叫做 Paxos 的希腊城邦&#xff0c;城邦按照议会民主制的政治模式制定法律。在 Lesile Lamport 的论文中&#xff0c;提出了 Basic Paxos、Multi Paxos、Fast Paxos 三种模型。 Basic Paxos 角色介绍…

玩转硬件之Micro:bit的玩法(六)——扫地机器人

众所周知&#xff0c;扫地机器人&#xff0c;又称自动打扫机、智能吸尘、机器人吸尘器等&#xff0c;是智能家电的一种&#xff0c;能凭借人工智能&#xff0c;自动在房间内完成地板清理工作。一般采用刷扫和真空方式&#xff0c;将地面杂物先吸纳进入自身的垃圾收纳盒&#xf…

从“精益思想“看机器人的开发与应用:一场科技与效率的完美融合

在科技飞速发展的今天&#xff0c;机器人已经深入到我们的生活和工作之中&#xff0c;成为了提高效率、提升质量的重要工具。然而&#xff0c;如何让机器人的开发和利用更有效率、更精细&#xff0c;这是摆在我们面前的一道难题。此时&#xff0c;"精益思想"的出现&a…

Android基于Matrix绘制PaintDrawable设置BitmapShader,以手指触点为中心显示原图的圆切图,Kotlin(4)

Android基于Matrix绘制PaintDrawable设置BitmapShader&#xff0c;以手指触点为中心显示原图的圆切图&#xff0c;Kotlin&#xff08;4&#xff09; 这篇 Android基于Matrix绘制PaintDrawable设置BitmapShader&#xff0c;以手指触点为中心显示原图像圆图&#xff0c;Kotlin&am…

Docker部署Traefik结合内网穿透远程访问Dashboard界面

文章目录 前言1. Docker 部署 Trfɪk2. 本地访问traefik测试3. Linux 安装cpolar4. 配置Traefik公网访问地址5. 公网远程访问Traefik6. 固定Traefik公网地址 前言 Trfɪk 是一个云原生的新型的 HTTP 反向代理、负载均衡软件&#xff0c;能轻易的部署微服务。它支持多种后端 (D…

实例分割模型Mask2Former解析

Masked2Former是在mask rcnn基础上改进的一个实例分割模型&#xff0c;参考了一些经典模型的思想&#xff0c;如DETR&#xff0c;实验表明效果很好。 论文&#xff1a;《Masked-attention Mask Transformer for Universal Image Segmentation》 https://arxiv.org/abs/2112.0…

什么是TestNG以及如何创建testng.xml文件?

目录 什么是TestNG&#xff1f; 如何创建testng.xml文件 手动创建testng.xml 通过testng.xml运行整个包 通过testng.xml运行类 使用Eclipse创建testng.xml 本文将讨论TestNG以及如何通过执行testng.xml文件在TestNG中运行第一个测试用例。 什么是TestNG&#xff1f; Te…

Qt QGraphicsItem获取鼠标位置对应图像坐标

本次使用了QGraphicsView来加载图像&#xff0c;然后给其设置了一个QGraphicsScene场景&#xff0c;再给场景添加了一个自定义的QGraphicsItem&#xff0c;在其中重写了paint事件&#xff0c;用来重绘图像。 正常情况时&#xff0c;QGraphicsItem上图像的有效区域QRect大小和QG…

内网穿透[让你在家里也能榨干学校的服务器]Yep!

内网穿透 问题&#xff1a;什么是内网穿透&#xff0c;内网穿透的作用是什么&#xff1f; 前提&#xff01;&#xff01;&#xff01;&#xff01;你得拥有超级管理员的权限&#xff0c;比如root&#xff0c;不然后面的一切免提&#xff01; 应用场景如下&#xff1a;比如你…

复选框QCheckBox和分组框QGroupBox

1. 复选框&#xff1a;QCheckBox 实例化 //实例化 // QCheckBox* checkBox new QCheckBox("是否同意该条款",this);QCheckBox* checkBox new QCheckBox(this);1.1 代码实现 1.1.1 复选框的基本函数 复选框选中状态的参数 Qt::Unchecked //未选中状态 Qt::Part…

C++I/O流——(3)文件输入/输出(第二节)

归纳编程学习的感悟&#xff0c; 记录奋斗路上的点滴&#xff0c; 希望能帮到一样刻苦的你&#xff01; 如有不足欢迎指正&#xff01; 共同学习交流&#xff01; &#x1f30e;欢迎各位→点赞 &#x1f44d; 收藏⭐ 留言​&#x1f4dd; 含泪播种的人一定能含笑收获&#xff…

Qt QSlider滑动条控件

文章目录 1 属性和方法1.1 值1.2 方向1.3 步长1.4 信号和槽 2 实例2.1 布局2.2 代码实现 QSlider是滑动条控件&#xff0c;滑动条可以在一个范围内拖动&#xff0c;并将其位置转换为整数 最常见的应用就是视频播放器中的进度条 1 属性和方法 QSlider继承自QAbstractSlider&…

Linux中文件名修改的多种方法

找一个不算漂亮的普通女孩&#xff0c;一起柴米油盐&#xff0c;一起日出日落&#xff0c;一起田间地头&#xff0c;一起春花冬雪&#xff01;要一个不算大的小房子&#xff0c;生两个健康可爱的宝宝&#xff0c;这样就很好。。。。。。 简介&#xff1a; 在Linux系统中&#x…

使用Python+pygame实现贪吃蛇小游戏

使用Pythonpygame贪吃蛇小游戏 使用第三方库pygame&#xff0c;关于Python中pygame游戏模块的安装使用可见 https://blog.csdn.net/cnds123/article/details/119514520 给出两种实现。 第一种 运行效果如下&#xff1a; 游戏源码如下&#xff1a; import pygame import sy…