AI Agent:大模型的下一个高地

科技云报道原创。

当所有人都沉浸在与ChatGPT对话的乐趣中,一场静水流深的变革已然启动。

2023年11月,比尔·盖茨发表了一篇文章,他表示,AI Agent将是大模型之后的下一个平台,不仅改变每个人与计算机互动的方式,还将在五年内彻底改变我们的生活。

如果说大模型是未来水电煤一般的基础设施,那么Agent则是未来用户接触、使用AI的方式。

AI Agent不再满足于仅仅作为“聊天对象”的角色,而是渴望成为能在真实世界里挥洒自如的“智能执行者”。

数据显示,过去两年间,针对AI Agent的研究投入增长幅度高达300%。大模型市场的玩家们,似乎正齐刷刷地转向AI Agent。

在国内,截止去年11月中旬,AI Agent赛道发生融资事件13起,总融资金额约735亿人民币,公司融资均值为56.54亿人民币。

在国外,据外媒MattSchlicht数据显示,至少有100个项目正致力于将AI代理商业化,近10万名开发人员正在构建自主Agent。

毫无疑问,AI Agent正在成为大模型之后下一个爆发点。
在这里插入图片描述
值得探讨的是,作为一种巨大的技术变革,AI Agent将如何改变我们的生活?国内外AI Agent的发展现状如何?AI Agent落地的关键点是什么?

AI Agent:自主执行任务的“小助手”

去年4月份,斯坦福和谷歌的研究者共同创建了一个“西部世界小镇(Westworldsimulation)”。在这个小镇里,25个AI Agent每天都在乐此不疲地散步、约会、聊天、用餐以及分享当天的新闻。
在这里插入图片描述
在这个实验中,AI Agent(智能体)在执行任务和互动上表现出了令人惊艳的自主性和智能性,由此引发了业界的高度关注。

事实上,这并不是AI Agent第一次出圈,其概念从出现到爆发,已经迈过多个阶段。

在单一Agent阶段,主要是针对不同领域和场景的特定任务,开发和部署专门的智能体。以GPTengineer为例,给它一个需求,其就可以把代码写个大概。

在多Agent合作阶段,是由不同角色的Agent自动合作完成复杂的任务。

例如在MetaGPT上,如果让其做一个股票分析的工具,它会把这个任务分别翻译给产品经理、架构师、项目经理等5个角色,模拟整个的软件开发中所有决策工作流。

不过,随着微软全新工具AutoGen的发布,AI Agent很快翻开了新的篇章。

AutoGen允许多个LLM智能体通过聊天来解决任务。LLM智能体可以扮演各种角色,如程序员、设计师,或者是各种角色的组合,对话过程就把任务解决了。

与MetaGPT不同的是,MetaGPT的角色模型是被定义好的,而AutoGen可以让开发者自己定义Agent,还可以让他们相互对话。

这是一个新的且富有创造性的Agent框架。在AutoGen发布的两个星期内,星标量从390狂增到10K,并在Discord上吸引了5000多名成员。

如果说AutoGPT拉开了自主智能体(Autonomous Agent)的帷幕,那么前文提到的“西部世界小镇”则开启了生成智能体(Generative Agent)之路。

生成智能体就像美剧《西部世界》中的人形机器人或《失控玩家》中的智能NPC,它们在同一环境中生活,拥有自己的记忆和目标,不仅与人类交往,还会与其他机器人互动。

总的来说,AI Agent是一个能够自主行动、执行任务的“小助手”,能够针对目标独立思考并做出行动,会根据给定任务详细拆解出每一步的计划步骤,依靠来自外界的反馈和自主思考,为自己创建prompt以实现目标。

比如,让AI Agent买一杯咖啡,它会首先拆解如何才能为你购买一杯咖啡并拟定代用某APP下单以及支付等若干步骤,然后按照这些步骤调用APP选择外卖,再调用支付程序下单支付,过程无需人类去指定每一步操作。

而目前基于LLM的ChatGPT给出的反馈,只能止于“无法购买咖啡,它只是一个文字AI助手”之类的回答。

这也就不难理解,为什么AI Agent会是大模型的下一个高地——大模型聚焦于处理语言相关的任务,它并不直接与现实世界互动,而AI Agent强调解决实际问题的能力和与环境交互的全面性。

AI Agent加速落地

事实上,大模型还没有出现之前,一些企业就已在研究传统AI与Agent的结合应用。因此,AI Agent在各领域的落地比大家预想得要快很多。

目前,海外已经在零售、房地产、旅游、客户服务、人力资源、金融、制造业等多个领域出现AI Agent架构与产品,例如:

在医疗领域,Agent可以帮助诊断、治疗和监测患者。IBM Watson Health 是一个AI智能体,可以分析医疗数据,以识别潜在的健康问题并推荐治疗方案。

在金融领域,Agent可以分析财务数据、检测欺诈行为并提出投资建议。嘉信理财(Charles Schwab)使用名为Intelligent Portfolio的人工智能智能体,根据客户的投资目标创建和管理投资组合。

在零售业务场景中,Agent可以提供个性化推荐,改善供应链管理,增强客户体验。亚马逊的Alexa是一个AI智能体,可以推荐产品、下订单和跟踪发货。

在制造业,Agent可以优化生产流程,预测维护需求,提高产品质量。通用电气使用名为Predix的AI智能体实时监控机器,以预测和防止设备故障。

在运输领域,自主AI Agent可以协助路线规划、交通管理和车辆安全。特斯拉的Autopilot有助于自动驾驶车辆,并帮助驾驶员停车、变道和安全驾驶。

不仅如此,在底层技术方面,AI Agent也打下了不错的基础。

例如,OpenAI开发的GPTs,以及推出的GPT-4Turbo和可定制AI Agent,提供了基础Agent的构建能力,如工具调用、基于知识库文件记忆能力等,使得AI Agent进入了另外一个新阶段,即人人都可以打造自己的Agent。

但总的来说,AI Agent技术还处于比较早期的阶段,主要在两个类型的场景中更容易落地:

一类是具有交互性质的场景。

例如,智能机器人和问答式交互,这与AI Agent的迭代性质天生匹配。在这种情境下,对于一些简单的任务,比如购买火车票或解决企业内部IT服务的问题,任务型机器人的应用效果较好,并且相对容易维护。

另一类是线性执行任务的场景。

例如,一家支付公司要求用户在开户时提交身份证明,在这种场景下,前台是单向的,但后台可以利用AI Agent执行,相较于原有的流水线,AI Agnet更为高效。

AI Agent落地挑战

尽量理想很美好,但当前市场上的大多数AI Agent,其实只是构建了一个基于特定知识库或专业数据的Chatbot。这些智能体主要用于进行问答交互,如获取行业资讯、报告等,在程序联动和操作方面还有很大的提升空间。

在一些更复杂的场景中,现有的AI Agent技术只能做到辅助,无法完全实现自动执行。

这背后的原因有很多,包括技术能力、商业化路径、应用场景等,都会影响Agent的能力体现。

首当其冲的,依然是技术问题。

LLM作为AI Agent的认知核心,其智能性在很大程度上决定了AI Agent感知环境、做出决策并执行适当行动的能力。但就目前而言,包括GPT-4在内的所有大模型,能力仍需提升。

同时,AI Agent继承了LLM的一些问题,比如“幻觉”、“可解释性”等问题。此外,对于底层基础模块的质量和性能,包括调用图像识别等模型,也会直接影响到上层建筑的性能。

此外,Agnet各个模块之间的交互和运行可能会产生许多中间结果和状态,这也带来了一些技术挑战。例如,处理中间结果的鲁棒性是一个问题,下层模块的性能和质量会直接影响上层模块的执行。

其次,AI Agent的落地效果也受限于应用场景。

例如,在出行预订中,得益于丰富的API等问题,AI Agent表现出色。而在如法律助手场景中,由于新知识的频繁出现和API的不完善,实际应用面临更多挑战。

这一点,从国内AI Agent纷纷生长于协同办公平台就可见一斑。

由于协同办公平台本身具备良好的API接口和插件体系,这使得将大模型集成到现有工具中变得更加容易。

同时,许多企业都在使用协同办公软件,这意味着广泛的用户基础可以加速大模型的迭代和优化过程,使其更好地满足用户需求。

最后,找到切入点以及好的商业模式至关重要。

AI Agent爆发的一段时间,人们普遍认为补齐了大模型短板的AI Agent更具备实用性,将是大模型重要落地方向。

但就目前而言,这一路径的商业化存在诸多问题。拿游戏场景而言,目前收费主要来源于出售游戏装备、皮肤等方式,而AI Agent的价值无法体现在这些固有的变现途径上。

由于AI Agent落地效果未出现颠覆性的能力,C端用户是否会为其买单无法得知,能否成为AI大模型从C端商业化爆发一个最核心应用方向,还需时间验证。

相对来说,B端可能更适合AI Agent的落地。在Agent构建平台上,企业或将可以自己构建自己RPA、CRM、办公OA等一系列管理软件;软件厂商也可以基于此平台构建软件为企业提供服务。

但这仍需要成本控制、投入预算、实现效率、安全管控等多方面严格及缜密的评估。

结语

无论存在多少质疑,时至今日,AI Agent依然带来了诸多想象力。技术发展之路本就充满质疑与批判,科技变革对于任何一个企业与个体都是一场机遇,关键在于如何把握它。

【关于科技云报道】

专注于原创的企业级内容行家——科技云报道。成立于2015年,是前沿企业级IT领域Top10媒体。获工信部权威认可,可信云、全球云计算大会官方指定传播媒体之一。深入原创报道云计算、大数据、人工智能、区块链等领域。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/322525.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

NVS入门(基于ESP-IDF)

主要参考资料: B站Up主 孤独的二进制《ESP32 存储篇 NVS 非易失性存储库》 ESP-IDF开发指南>API参考>非易失性存储: https://docs.espressif.com/projects/esp-idf/zh_CN/v5.1/esp32s3/api-reference/storage/nvs_flash.html 目录 概述NVS使用(以W…

get_reg_by_offset函数

get_reg_by_offset函数如下: 在建立了寄存器模型后,可以直接通过层次引用的方式访问寄存器: rm.invert.read(...); 但是出于某些原因,如果依然要使用地址来访问寄存器模型,那么此时可以使用get_reg_by_offset函数通过…

部署一款开源的交互审计系统—Next Terminal

博客地址 部署一款开源的交互审计系统—Next Terminal-雪饼 (xue6ing.cn)https://xue6ing.cn/archives/bu-shu-yi-kuan-kai-yuan-de-jiao-hu-shen-ji-xi-tong--next-terminal Next Terminal是什么? Next Terminal是一个开源的交互审计系统,具有以下主…

Linux(适合开发人员参考)

Linux的概述 先了解Unix Unix是一个强大的多用户、多任务操作系统。于1969年在AT&T的贝尔实验室开发。UNIX的商标权由国际开放标准组织(The Open Group)所拥有。UNIX操作系统是商业版,需要收费,价格比Microsoft Windows正版…

移动端开发进阶之蓝牙通讯(一)

移动端开发进阶之蓝牙通讯(一) 移动端进阶之蓝牙通讯需要综合考虑蓝牙版本选择、协议栈使用、服务匹配、设备连接、安全性和硬件支持等方面。 一、蓝牙版本选择 根据实际需求和应用场景选择合适的蓝牙版本; 1.0,1M/s。 2.0EDR…

细说JavaScript函数(JavaScript函数详解)

函数的作用就是封装一段JavaScript代码,让开发者可以通古简单的方式使用这段代码 一、函数的分类 在几乎所有的编程语言中,都有函数这一概念,并且没中语言本身都继承了丰富的函数,这类函数被称为系统函数或者内置函数&#xff0…

vue:使用【3.0】:条件模块

一、条件层级效果图 二、代码 <template><ContentWrap><!-- 添加条件分支:level1 --><div class"btnBox" v-if"isEdit"><el-button type"primary" click"add">添加条件分支</el-button></div…

YOLOv8改进 | 细节涨点篇 | UNetv2提出的一种SDI多层次特征融合模块(分割高效涨点)

一、本文介绍 本问给大家带来的改进机制是UNetv2提出的一种多层次特征融合模块(SDI)其是一种用于替换Concat操作的模块,SDI模块的主要思想是通过整合编码器生成的层级特征图来增强图像中的语义信息和细节信息。该方法已在多个公开的医学图像分割数据集上进行了验证,包括皮…

HANA:传参,游标(Cursor)应用,FOR循环,解决存储表内存溢出的问题

作者 idan lian 如需转载备注出处 1.应用场景 最近项目上用HANA开发的比较多&#xff0c;之前我是bw用的比较多&#xff0c;就不会有这种问题。我们这个项目很多都是开发的计算视图&#xff0c;但最近做acdoca的逻辑时&#xff0c;计算视图在生产环境执行的时候报错&#xf…

阿里巴巴分拆业务板块,中台架构已经死了吗?

阿里巴巴集团董事会主席兼首席执行官张勇发布全员信&#xff0c;宣布启动“16N”组织变革。在阿里巴巴集团之下&#xff0c;将设立阿里云智能、淘宝天猫商业、本地生活、菜鸟、国际数字商业、大文娱等六大业务集团和多家业务公司。 业务集团和业务公司分别成立董事会&#xff…

基于电源完整性的一些PCB设计建议

基于电源完整性的一些PCB设计建议 1. 尽量减少电源和地通路之间的环路电感&#xff0c;在相邻的层上分配电源和接地面时&#xff0c;使用尽可能薄的电介质&#xff1b; 2. 通过在平面之间使用尽可能高的介电常数来获得平面之间的最低阻抗&#xff0c;与尽可能薄的介电常数设计…

深入理解 Flink(七)Flink Slot 管理详解

1.JobMaster 注册成功之后开始调度 JobMaster 中封装了一个 DefaultScheduler&#xff0c;在 DefaultScheduler.startSchedulingInternal() 方法中生成 ExecutionGraph 以执行调度。 2.Flink 的资源管理机制 资源调度的大体流程如下&#xff1a; a.TaskExecutor 注册 Reg…

从CISC到RISC-V:揭开指令集的面纱

对于大多数同学来说&#xff0c;计算机或智能手机的运行似乎就像魔法一样神奇。你可能知道它们内部都是一些复杂的电子组件&#xff0c;比如CPU、内存等等&#xff0c;但这些组件是如何协同工作&#xff0c;让我们可以在电脑上打字&#xff0c;或者在手机上看视频呢&#xff1f…

matplotlib绘制动态瀑布图

绘制瀑布图思路&#xff1a;遍历指定文件目录下所有的csv文件&#xff0c;每读一个文件&#xff0c;取文件前20行数据进行保存&#xff0c;如果超过规定的行数300行&#xff0c;将最旧的数据删除&#xff0c;仅保留300行数据进行展示。 网上找的大部分绘制瀑布图的代码&#x…

ssh远程登录协议 搞定远程访问控制

远程管理linux系统基本上都要使用到ssh&#xff0c;原因很简单&#xff1a;telnet、FTP等传输方式是以明文传送用户认证信息&#xff0c;本质上是不安全的&#xff0c;存在被网络窃听的危险。SSH&#xff08;Secure Shell&#xff09;目前较可靠&#xff0c;是专为远程登录会话…

走迷宫(c语言)

前言&#xff1a; 制作一个迷宫游戏是一个有趣的编程挑战。首先&#xff0c;我们需要设计一个二维数组来表示迷宫的布局&#xff0c;其中每个元素代表迷宫中的一个格子。我们可以使用不同的值来表示空格、墙壁和起点/终点。接下来&#xff0c;我们需生成迷宫。在生成迷宫的过程…

智能手表喇叭无气孔导致老化播放后没声音

智能音箱喇叭老化播放后没声音 智能手表要做防水&#xff0c;在外壳上打了防水胶&#xff0c;结果出现播放突然没声音的现象&#xff0e; 原因 一直播放&#xff0c;设备温度升高&#xff0c;因为做了防水密闭导致喇叭腔体气压异常&#xff0c;导致播放没声音&#xff0e; …

nginx入门学习

nginx简介 nginx 是什么?用来干嘛的 通俗解释&#xff1a;客户端向服务器请求时&#xff0c;提供让多个服务器一起处理请求的东西 是一个反向代理服务器&#xff0c;能够提供负载均衡&#xff0c;和进行反向代理的功能 正向代理&反向代理 客户端向代理服务器请求&#…

短剧分销系统,助力短剧市场发展,实现短剧收益

近几年来&#xff0c;我国短剧兴起&#xff0c;在经过几年的蓄力后迎来了爆发期&#xff0c;短剧市场规模一路狂飙&#xff01;短剧拥有节奏快、剧情“爽”的优势&#xff0c;成功占领了各大观众的碎片化时间&#xff0c;短剧已经成为了影视行业的新力量&#xff0c;也成为了当…

微服务概述之微服务特性

前言 既然系统采用了微服务架构&#xff0c;就需要了解一些微服务的特性&#xff0c;这样在进行微服务开发时&#xff0c;脑海中才会有一些指导方向。微服务具有以下特性。 1. 服务组件化 组件是独立、可替换、可升级的软件的单元。将整体应用拆分成独立的服务组件后&#xff…