前言
整体评价
T3, T4 都是典题
T1. 大于等于顺序前缀和的最小缺失整数
思路: 模拟
class Solution {
public:
int missingInteger(vector<int>& nums) {
set<int> s(nums.begin(), nums.end());
int acc = nums[0];
for (int i = 1; i < nums.size(); i++) {
if (nums[i - 1] + 1 != nums[i]) break;
acc += nums[i];
}
while (s.find(acc) != s.end()) {
acc ++;
}
return acc;
}
};
T2. 使数组异或和等于 K 的最少操作次数
思路: 思维题
设 KaTeX parse error: Got function '\prod' with no arguments as superscript at position 5: k ^ \̲p̲r̲o̲d̲_{i=0}^{i=n-1} … 的1个数
class Solution {
public:
int minOperations(vector<int>& nums, int k) {
int r = 0;
for (int v: nums) r ^= v;
r = r ^ k;
int cnt = 0;
while (r > 0) {
r = r & (r - 1);
cnt++;
}
return cnt;
}
};
T3. 使 X 和 Y 相等的最少操作次数
思路: BFS
BFS的状态数10^6内
如果x,y值域扩大的话,那就很变难了,需要用dfs来求解
class Solution {
public:
int minimumOperationsToMakeEqual(int x, int y) {
if (x <= y) return y - x;
int inf = 0x3f3f3f3f;
vector<int> vec(x + 11 + 1, inf);
vec[x] = 0;
deque<int> deq;
deq.push_back(x);
while (!deq.empty()) {
int c = deq.front();
deq.pop_front();
if (c - 1 >= 0 && vec[c - 1] > vec[c] + 1) {
vec[c - 1] = vec[c] + 1;
deq.push_back(c - 1);
}
if (c + 1 <= x + 11 && vec[c + 1] > vec[c] + 1) {
vec[c + 1] = vec[c] + 1;
deq.push_back(c + 1);
}
if (c % 5 == 0 && vec[c / 5] > vec[c] + 1) {
vec[c / 5] = vec[c] + 1;
deq.push_back(c / 5);
}
if (c % 11 == 0 && vec[c / 11] > vec[c] + 1) {
vec[c / 11] = vec[c] + 1;
deq.push_back(c / 11);
}
}
return vec[y];
}
};
T4. 统计强大整数的数目
思路: 数位DP
using int64 = long long;
class Solution {
public:
long long numberOfPowerfulInt(long long start, long long finish, int limit, string s) {
return solve(finish, limit, s) - solve(start - 1, limit, s);
}
int64 solve(int64 v, int limit, string s) {
vector<int> arr;
for (int64 x = v; x > 0; x /= 10) arr.push_back((int)(x % 10));
reverse(arr.begin(), arr.end());
int n = arr.size(), m = s.length();
if (n < s.length()) return 0;
if (n == m) {
int sv = atoi(s.c_str());
return sv <= v ? 1LL : 0LL;
}
vector<int64> dp(n, -1);
function<int64(int, bool, bool)> dfs = [&](int idx, bool isNum, bool isLimit) {
if (idx + m == n) {
if (isLimit) {
for (int i = idx; i < n; i++) {
if (arr[i] < s[i - idx] - '0') return 0LL;
else if (arr[i] > s[i - idx] - '0') return 1LL;
}
}
return 1LL;
}
int64 res = 0;
if (!isNum) {
res += dfs(idx + 1, false, false);
}
if (isNum && !isLimit) {
if (dp[idx] != -1) return dp[idx];
}
int s = isNum ? 0 : 1;
int e = isLimit ? min(arr[idx], limit) : limit;
for (int i = s; i <= e; i++) {
res += dfs(idx + 1, true, isLimit && i == arr[idx]);
}
if (isNum && !isLimit) {
dp[idx] = res;
}
return res;
};
int64 res = dfs(0, false, true);
return res;
}
};