大语言模型向量数据库

大语言模型&向量数据库

  • LARGE LANGUAGE MODELS
    • A. Vector Database & LLM Workflow
    • B. Vector Database for LLM
    • C. Potential Applications for Vector Database on LLM
    • D. Potential Applications for LLM on Vector Database
    • E. Retrieval-Based LLM
    • F. Synergized Example

文章来源:A Comprehensive Survey on Vector Database:Storage and Retrieval Technique, Challenge
链接: https://arxiv.org/pdf/2310.11703.pdf

LARGE LANGUAGE MODELS

Typically, large language models (LLMs) refer to Transformer language models that contain hundreds of billions (or more) of parameters, which are trained on massive text data. On a suite of traditional NLP benchmarks, GPT-4 outperforms both previous large language models and most state-of-the-art systems.
通常,大型语言模型(LLM)指的是包含数千亿(或更多)参数的 Transformer 语言模型,这些模型是在海量文本数据上训练出来的。在一套传统的 NLP 基准测试中,GPT-4 的表现优于以前的大型语言模型和大多数最先进的系统。

A. Vector Database & LLM Workflow

Databases and large language models sit at opposite ends of the data science research:
Databases are more concerned with storing data efficiently and retrieving it quickly and accurately.Large language models are more concerned with characterizing data and solving semantically related problems.If the database is specified as a vector database, a more ideal workflow can be constructed as follows:
数据库和大型语言模型处于数据科学研究的两端:数据库更关注高效地存储数据以及快速准确地检索数据。大型语言模型更关注数据特征和解决语义相关问题。
如果将数据库指定为矢量数据库,则可以构建如下较为理想的工作流程:

在这里插入图片描述
Fig. 1. An ideal workflow for combining vector databases and large language models.
图1。结合矢量数据库和大型语言模型的理想工作流程。

At first, the large language model is pre-trained using textual data, which stores knowledge that can be prepared for use in natural language processing tasks. The multimodal data is embedded and stored in a vector database to obtain vector representations. Next, when the user inputs a serialized textual question, the LLM is responsible for providing NLP capabilities, while the algorithms in the vector database are responsible for finding approximate nearest neighbors.
Combining the two gives more desirable results than using only LLM and the vector database.
If only LLM is used, the results obtained may not be accurate enough, while if only vector databases are used, the results obtained may not be user-friendly.
首先,使用文本数据对大型语言模型进行预训练,这些数据存储了可用于自然语言处理任务的知识。多模态数据被嵌入并存储在矢量数据库中,以获得矢量表示。接下来,当用户输入序列化文本问题时,LLM 负责提供 NLP 功能,而向量数据库中的算法则负责寻找近似近邻。
与只使用 LLM 和矢量数据库相比,将两者结合起来会得到更理想的结果。如果只使用 LLM,得到的结果可能不够准确,而如果只使用向量数据库,得到的结果可能对用户不友好。

B. Vector Database for LLM

1.Data: By learning from massive amounts of pre-training textual data, LLMs can acquire various emerging capabilties,which are not present in smaller models but are present in larger models, e.g.,in-context learning, chain-of-thought, and instruction following.Data plays a crucial role in LLM’s emerging ability, which in turn can unfold at three points:
1.数据: 通过从海量的预训练文本数据中学习,LLM 可以获得各种新兴能力,这些能力在较小的模型中不存在,但在较大的模型中存在,如上下文学习、思维链和指令跟随:

Data scale. This is the amount of data that is used to train the LLMs. According to, LLMs can improve their capabilities predictably with increasing data scale, even without targeted innovation. The larger the data scale, the more diverse and representative the data is, which can help the LLMs learn more patterns and relationships in natural language. LLMs can improve their capabilities predictably with increasing data scale, even without targeted innovation. However, data scale also comes with challenges, such as computational cost,environmental impact, and ethical issues.
数据规模 。这是用于训练LLM的数据量。根据,LLM可以随着数据规模的增加而提高其能力,即使没有针对性的创新。数据规模越大,数据就越具有多样性和代表性,这可以帮助LLM学习更多的自然语言模式和关系。LLM可以随着数据规模的增加而可预测地提高其能力,即使没有针对性的创新。然而,数据规模也带来了挑战,如计算成本、环境影响和道德问题。

Data quality. This is the accuracy, completeness, consistency, and relevance of the data that is used to train the LLMs.The higher the data quality, the more reliable and robust the LLMs are, which can help them avoid errors and biases.LLMs can benefit from data quality improvement techniques,such as data filtering, cleaning, augmentation, and balancing.However, data quality also requires careful evaluation and validation, which can be difficult and subjective.
数据质量。这是用于训练LLM的数据的准确性、完整性、一致性和相关性。数据质量越高,LLM就越可靠和稳健,这可以帮助它们避免错误和偏差。LLM可以受益于数据质量改进技术,如数据过滤、清理、增强和平衡。然而,数据质量也需要仔细的评估和验证,这可能是困难和主观的。

Data diversity. This is the variety and richness of the data that is used to train the LLMs. The more diverse the data,the more inclusive and generalizable the LLMs are, which can help them handle different languages, domains, tasks, and users. LLMs can achieve better performance and robustness by using diverse data sources, such as web text, books, news articles, social media posts, and more. However, data diversity also poses challenges, such as data alignment, integration, and protection.
数据多样性。这就是用于训练LLM的数据的多样性和丰富性。数据越多样化,LLM就越具有包容性和可推广性,这可以帮助它们处理不同的语言、域、任务和用户。LLM可以通过使用不同的数据源,如网络文本、书籍、新闻文章、社交媒体帖子等,实现更好的性能和稳健性。然而,数据多样性也带来了挑战,如数据一致性、集成和保护。

As for vector database, the traditional techniques of database such as cleaning, de-duplication and alignment can help LLM to obtain high-quality and large-scale data, and the storage in
vector form is also suitable for diverse data.
对于矢量数据库,传统的数据库技术,如清理、重复数据消除和对齐,可以帮助LLM获得高质量和大规模的数据,并且矢量形式的存储也适用于各种数据。

2.Model: In addition to the data, LLM has benefited from growth in model size. The large number of parameters creates challenges for model training, and storage. Vector databases can help LLM reduce costs and increase efficiency in this regard.
模型:除了数据之外,LLM还受益于模型规模的增长。大量的参数给模型训练和存储带来了挑战。矢量数据库可以帮助LLM在这方面降低成本并提高效率。

Distributed training. DBMS can help model storage in the context of model segmentation and integration. Vector databases can enable distributed training of LLM by allowing multiple workers to access and update the same vector data in parallel. This can speed up the training process and reduce the communication overhead among workers.
分布式训练。数据库管理系统有助于在模型分割和集成的背景下存储模型。矢量数据库可以允许多个工作人员并行访问和更新相同的矢量数据,从而实现 LLM 的分布式训练。这可以加快训练过程,减少工作人员之间的通信开销。

Model compression .The purpose of this is to reduce the complexity of the model and the number of parameters, reduce model storage and computational resources, and improve the efficiency of model computing. The methods used are typically pruning, quantization, grouped convolution, knowledge distillation, neural network compression, low-rank decomposition, and so on. Vector databases can help compress LLM by storing only the most important or representative vectors of the model,instead of the entire model parameters. This can reduce the storage space and memory usage of LLM, as well as the inference latency.
模型压缩。这样做的目的是降低模型的复杂性和参数的数量,减少模型存储和计算资源,提高模型计算的效率。所使用的方法通常是修剪、量化、分组卷积、知识提取、神经网络压缩、低秩分解等。向量数据库可以通过只存储模型中最重要或最具代表性的向量而不是整个模型参数来帮助压缩LLM。这可以减少LLM的存储空间和内存使用,以及推理延迟。

Vector storage. Vector databases can optimize the storage of vector data by using specialized data structures, such as inverted indexes, trees, graphs, or hashing. This can improve the performance and scalability of LLM applications that rely on vector operations, such as semantic search, recommendation,or question answering.
矢量存储。矢量数据库可以通过使用专门的数据结构(如反向索引、树、图或哈希)来优化矢量数据的存储。这可以提高依赖向量操作(如语义搜索、推荐或问答)的LLM应用程序的性能和可扩展性。

3.Retrieval: Users can use a large language model to generate some text based on a query or a prompt, however, the output may not be diversiform, consistent, or factual. Vector databases can ameliorate these problems on a case-by-case basis, improving the user experience.
检索:用户可以使用大型语言模型根据查询或提示生成一些文本,但输出可能不多样、不一致或不真实。矢量数据库可以在个案的基础上改善这些问题,改善用户体验。

Cross-modal support. V ector databases can support cross-modal search, which is the ability to search across different types of data, such as text, images, audio, or video. For example, an LLM can use a vector database to find images that are relevant to a text query, or vice versa. This can enhance the user experience and satisfaction by providing more diverse and rich results.
跨模态支持。矢量数据库可以支持跨模态搜索,即跨不同类型的数据(如文本、图像、音频或视频)进行搜索的能力。例如,LLM可以使用矢量数据库来查找与文本查询相关的图像,反之亦然。这可以通过提供更加多样化和丰富的结果来增强用户体验和满意度。

Real-time knowledge. V ector databases can enable real-time knowledge search, which is the ability to search for the most up-to-date and accurate information from various sources. For example, an LLM can use a vector database to find the latest news, facts, or opinions about a topic or event.This can improve the user’s awareness and understanding by providing more timely and reliable results.
实时知识。矢量数据库可以实现实时知识搜索,这是从各种来源搜索最新和准确信息的能力。例如,LLM可以使用矢量数据库来查找有关主题或事件的最新新闻、事实或意见。这可以通过提供更及时和可靠的结果来提高用户的意识和理解

Less hallucination. V ector databases can help reduce hallucination, which is the tendency of LLM to generate false or misleading statements. For example, an LLM can use a vector database to verify or correct the data that it generates or uses for search. This can increase the user’s trust and confidence by providing more accurate and consistent results.
更少的幻觉。矢量数据库可以帮助减少幻觉,这是LLM产生虚假或误导性陈述的趋势。例如,LLM可以使用矢量数据库来验证或更正其生成或用于搜索的数据。这可以通过提供更准确和一致的结果来增加用户的信任和信心。

C. Potential Applications for Vector Database on LLM

Vector databases and LLMs can work together to enhance each other’s capabilities and create more intelligent and interactive systems. Here are some potential applications for vector databases on LLMs:
矢量数据库和LLM可以协同工作,增强彼此的能力,创建更智能、更交互式的系统。以下是矢量数据库在LLM上的一些潜在应用:

1 Long-term memory: Vector Databases can provide LLMs with long-term memory by storing relevant documents or information in vector form. When a user gives a prompt to an LLM, the V ector Database can quickly retrieve the most similar or related vectors from its index and update the context for the LLM. This way, the LLM can generate more customized and informed responses based on the user’s query and the V ector Database’s content.
1 长期记忆:矢量数据库可以通过以矢量形式存储相关文档或信息,为LLM提供长期记忆。当用户提示LLM时,矢量数据库可以从其索引中快速检索最相似或最相关的矢量,并更新LLM的上下文。这样,LLM可以根据用户的查询和Vector数据库的内容生成更定制、更明智的响应。

2 Semantic search: Vector Databases can enable semantic search for LLMs by allowing users to search for texts based on their meaning rather than keywords. For example, a user can ask an LLM a natural language question and the Vector Database can return the most relevant documents or passages that answer the question. The LLM can then summarize or paraphrase the answer for the user in natural language.
2 语义搜索:矢量数据库可以允许用户根据文本的含义而不是关键字来搜索文本,从而实现LLM的语义搜索。例如,用户可以向LLM提出自然语言问题,矢量数据库可以返回回答该问题的最相关的文档或段落。LLM然后可以用自然语言为用户总结或转述答案。

3 Recommendation systems: Vector Databases can power recommendation systems for LLMs by finding similar or complementary items based on their vector representations. For example, a user can ask an LLM for a movie recommendation and the Vector Database can suggest movies that have similar plots, genres, actors, or ratings to the user’s preferences. The LLM can then explain why the movies are recommended and provide additional information or reviews.
3 推荐系统:矢量数据库可以根据LLM的矢量表示找到相似或互补的项目,从而为LLM的推荐系统提供动力。例如,用户可以向LLM请求电影推荐,矢量数据库可以建议情节、流派、演员或评分与用户偏好相似的电影。LLM可以解释为什么推荐这些电影,并提供额外的信息或评论。

D. Potential Applications for LLM on Vector Database

LLMs on vector databases are also very interesting and promising. Here are some potential applications for LLMs on vector databases:
矢量数据库上的LLM也是非常有趣和有前景的。以下是LLM在矢量数据库上的一些潜在应用:

1 Text generation: LLMs can generate natural language texts based on vector inputs from Vector Databases. For example, a user can provide a vector that represents a topic, a sentiment, a style, or a genre, and the LLM can generate a text that matches the vector. This can be useful for creating content such as articles, stories, poems, reviews, captions, summaries,etc.
1 文本生成:LLM可以根据矢量数据库中的矢量输入生成自然语言文本。例如,用户可以提供表示主题、情感、风格或流派的向量,LLM可以生成与该向量匹配的文本。这对于创建文章、故事、诗歌、评论、标题、摘要等内容非常有用。

2 Text augmentation: LLMs can augment existing texts with additional information or details from Vector Databases.For example, a user can provide a text that is incomplete, vague, or boring, and the LLM can enrich it with relevant facts, examples, or expressions from Vector Databases. This can be useful for improving the quality and diversity of texts such as essays, reports, emails, blogs, etc.
2 文本扩充:LLM可以使用矢量数据库中的附加信息或详细信息扩充现有文本。例如,用户可以提供不完整、模糊或无聊的文本,LLM可以使用向量数据库中的相关事实、示例或表达式来丰富文本。这有助于提高文章、报告、电子邮件、博客等文本的质量和多样性。

3 Text transformation: LLMs can transform texts from one form to another using VDBs. For example, a user can provide a text that is written in one language, domain, or format, and the LLM can convert it to another language, domain, or format using VDBs. This can be useful for tasks such as translation, paraphrasing, simplification, summarization, etc.
3 文本转换:LLM可以使用VDBs(向量数据库系统)将文本从一种形式转换为另一种形式。例如,用户可以提供以一种语言、域或格式编写的文本,LLM可以使用VDBs(向量数据库系统)将其转换为另一种语言,域或格式。这对于翻译、转述、简化、总结等任务非常有用。

E. Retrieval-Based LLM

1 Definition: Retrieval-based LLM is a language model which retrieves from an external datastore (at least during inference time).
定义:基于检索的LLM是一种从外部数据存储中检索的语言模型(至少在推理时间内)。

2 Strength: Retrieval-based LLM is a high-level synergy of LLMs and databases, which has several advantages over LLM only.
优势:基于检索的LLM是LLM和数据库的高级协同,与仅LLM相比有几个优势。

Memorize long-tail knowledge. Retrieval-based LLM can access external knowledge sources that contain more specific and diverse information than the pre-trained LLM parameters. This allows retrieval-based LLM to answer in-domain queries that cannot be answered by LLM only. Easily updated. Retrieval-based LLM can dynamically retrieve the most relevant and up-to-date documents from the data sources according to the user input. This avoids the need to fine-tune the LLM on a fixed dataset, which can be costly and time-consuming.
记住长尾知识。基于检索的LLM可以访问外部知识源,这些知识源包含比预先训练的LLM参数更具体、更多样的信息。这允许基于检索的LLM回答仅LLM无法回答的域内查询。易于更新。基于检索的LLM可以根据用户输入从数据源中动态检索最相关和最新的文档。这避免了在固定数据集上微调LLM的需要,这可能是昂贵和耗时的。

Better for interpreting and verifying. Retrieval-based LLM can generate texts that cite their sources of information, which allows the user to validate the information and potentially change or update the underlying information based on requirements. Retrieval-based LLM can also use fact-checking modules to reduce the risk of hallucinations and errors. Improved privacy guarantees. Retrieval-based LLM can protect the user’s privacy by using encryption and anonymization techniques to query the data sources. This prevents the data sources from collecting or leaking the user’s personal information or preferences. Retrieval-based LLM can also use differential privacy methods to add noise to the retrieved documents or the generated texts, which can further enhance the privacy protection.
更适合解释和验证。基于检索的LLM可以生成引用其信息来源的文本,这允许用户验证信息,并可能根据需求更改或更新基础信息。基于检索的LLM还可以使用事实核查模块来降低幻觉和错误的风险。改进了隐私保障。基于检索的LLM可以通过使用加密和匿名技术来查询数据源,从而保护用户的隐私。这防止了数据源收集或泄露用户的个人信息或偏好。基于检索的LLM还可以使用差分隐私方法来给检索到的文档或生成的文本添加噪声,这可以进一步加强隐私保护。

Reduce time and money cost. Retrieval-based LLM can save time and money for the user by reducing the computational and storage resources required for running the LLM.This is because retrieval-based LLM can leverage the existing data sources as external memory, rather than storing all the information in the LLM parameters. Retrieval-based LLM can also use caching and indexing techniques to speed up the document retrieval and passage extraction processes.
减少时间和金钱成本。基于检索的LLM可以通过减少运行LLM所需的计算和存储资源来为用户节省时间和金钱。这是因为基于检索的LLM可以利用现有的数据源作为外部存储器,而不是将所有信息存储在LLM参数中。基于检索的LLM还可以使用缓存和索引技术来加快文档检索和段落提取过程。

3 Inference: Multiple parts of the data flow are involved in the inference session.
推理:推理会话涉及数据流的多个部分。

在这里插入图片描述
Fig. 2. A retrieval-based LLM inference dataflow.
图 2. 基于检索的 LLM 推理数据流。

Datastore. The data store can be very diverse, it can have only one modality, such as a raw text corpus, or a vector database that integrates data of different modalities, and its treatment of the data determines the specific algorithms for subsequent retrieval. In the case of raw text corpus, which are generally at least a billion to trillion tokens, the dataset itself is unlabeled and unstructured, and can be used as a original knowledge base.
数据存储。数据存储可以是非常多样化的,它可以只有一种模态,例如原始文本语料库,或者集成不同模态数据的矢量数据库,并且它对数据的处理决定了后续检索的特定算法。在原始文本语料库的情况下,数据集本身是未标记的和非结构化的,可以用作原始知识库。

Index. When the user enters a query, it can be taken as the input for retrieval, followed by using a specific algorithm to find a small subset of the datastore that is closest to the query, in the case of vector databases the specific algorithms are the NNS and ANNS algorithms mentioned earlier.
索引。当用户输入查询时,可以将其作为检索的输入,然后使用特定的算法找到最接近查询的数据存储的一小部分,在矢量数据库的情况下,特定的算法是前面提到的NNS和ANNS算法。

F. Synergized Example

在这里插入图片描述
Fig. 3. A complex application of vector database + LLM for scientific research.
图3。一个复杂的应用向量数据库+ LLM的科学研究。

For a workflow that incorporates a large language model and a vector database, it can be understood by splitting it into four levels: the user level, the model level, the AI database level, and the data level, respectively.
对于包含大型语言模型和矢量数据库的工作流,可以通过将其分为四个级别来理解:用户级别、模型级别、人工智能数据库级别和数据级别。

For a user who has never been exposed to large language modeling, it is possible to enter natural language to describe their problem. For a user who is proficient in large language modeling, a well-designed prompt can be entered.
对于从未接触过大型语言建模的用户来说,可以输入自然语言来描述他们的问题。对于精通大型语言建模的用户,可以输入精心设计的提示。

The LLM next processes the problem to extract the key-words in it, or in the case of open source LLMs, the corresponding vector embeddings can be obtained directly.
LLM接下来处理该问题以提取其中的关键词,或者在开源LLM的情况下,可以直接获得相应的向量嵌入。

The vector database stores unstructured data and their joint embeddings. The next step is to go to the vector database to find similar nearest neighbors. The ones obtained from the sequences in the big language model are compared with the vector encodings in the vector database, by means of the NNS or ANNS algorithms. And different results are derived through a predefined serialization chain, which plays the role of a search engine.
矢量数据库存储非结构化数据及其联合嵌入。下一步是转到矢量数据库,查找相似的最近邻居。通过NNS或ANNS算法,将从大语言模型中的序列中获得的编码与向量数据库中的向量编码进行比较。不同的结果是通过一个预定义的序列化链得出的,它扮演着搜索引擎的角色。

If it is not a generalized question, the results derived need to be further put into the domain model, for example, imagine we are seeking an intelligent scientific assistant, which can be put
into the model of AI4S to get professional results. Eventually it can be placed again into the LLM to get coherent generated results.
如果这不是一个广义的问题,则需要将得出的结果进一步放入领域模型中,例如,想象我们正在寻找一个智能的科学助理,它可以放入AI4S的模型中以获得专业的结果。最终,可以将其再次放入LLM中以获得相干生成的结果。

For the data layer located at the bottom, one can choose from a variety of file formats such as PDF, CSV , MD, DOC,PNG, SQL, etc., and its sources can be journals, conferences,textbooks, and so on. Corresponding disciplines can be art,science, engineering, business, medicine, law, and etc.
对于位于底部的数据层,可以从PDF、CSV、MD、DOC、PNG、SQL等多种文件格式中进行选择,其来源可以是期刊、会议、教科书等。相应的学科可以是艺术、科学、工程、商业、医学、法律等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/316745.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

20240112-确定字符串的两半是否相似

题目要求 给定一个偶数长度的字符串s。把这个字符串分成长度相等的两半,前半部分a,后半部分b。 如果两个字符串的元音字母数目相同(a、e、i、o、u、A、E、I、O、U),那么它们就是相同的。区分大小写。 如果a和b相同&…

github新建仓库提交代码(本地命令行)

网页在home页面新建一个仓库之后&#xff0c;复制该仓库的URL&#xff0c;待会要用到在本地打开gitbash 进行初始化并将仓库克隆到本地git init git clone <刚刚复制的仓库URL>进入文件夹&#xff0c;创建文件&#xff0c;可以将要提交的内容写入文档cd <克隆下来的文…

多区域isis配置实验

一、预习&#xff1a; IS-IS&#xff1a;Intermediate System to Intermediate System&#xff0c;中间系统到中间系统&#xff0c;是ISO为它的CLNP&#xff08;ConnectionLess Network Protocol&#xff09;设计的一种动态路由协议&#xff0c;后来为了提供对IP路由的支持&…

InternLM第4次课笔记

XTuner 大模型单卡低成本微调实战 1 Finetune介绍 2 XTuner介绍 XTuner中微调的技术&#xff1a; 3 8GB显卡玩转LLM 4 动手实战环节

怎么理解接口幂等,项目中如何保证的接口幂等

都 2024 年了&#xff0c;竟然还有人不知道接口幂等是什么东西。 hi&#xff0c;大家好&#xff0c;我是 浮生 今天正好有空&#xff0c;给大家分享一下 幂等的实现。 什么是幂等&#xff1f; 一、问题解析 简单来说&#xff0c;就是一个接口&#xff0c;使用相同的参数重复执…

【Databend】行列转化:数据透视和逆透视

文章目录 数据准备数据透视数据逆透视总结 数据准备 学生学科得分等级测试数据如下&#xff1a; drop table if exists fact_suject_data; create table if not exists fact_suject_data (student_id int null comment 编号,subject_level varchar null comment …

AI副业拆解:人像卡通化,赋予你的形象全新生命力

大家好我是在看&#xff0c;记录普通人学习探索AI之路。 &#x1f525;让你的形象瞬间穿越二次元&#xff01;&#x1f680;人像卡通化&#xff0c;捕捉你的独特魅力&#xff0c;让真实与梦幻在此刻交融。&#x1f3a8; 今天为大家介绍如何免费把人像卡通化--漫画风 https://w…

视频监控平台的管理员账号在所有客户端都无法登录的问题解决

目 录 一、问题描述 二、问题排查 1、看问题提示 2、看日志信息 3、问题定位 三、问题解决 1. 添加权限角色 2、添加操作用户 3、验证 一、问题描述 AS-V1000视频监控平台安装部署完成后&#xff0c;发现管理员admin不能到web客户端&#xff0c;觉…

C语言变量与函数

目录 变量函数 变量 变量&#xff1a;计算机里的一块内存空间int a 0; 表示定义一个整型 int 变量&#xff1b;这个变量名字叫做 a “” 表示赋值&#xff1b;即将右边的 0 赋值给左边的整型变量 a 现在这一块空间 a 存放了一个值 0 这个过程也叫做整型变量 a 的初始化初始化…

深入剖析开源大模型+Langchain框架,智能问答系统性能下降原因

大模型&#xff08;LLM&#xff09;相关理论研究与工程实践随着 GPT3 的发布&#xff0c;在学术界、工业界大爆发&#xff0c;备受各行各业关注&#xff0c;并涌现出一些赋能行业、促进生产力、生产关系变革的实践。GPT3 [1] 以及斯坦福计算机学院近 100 教授联名论文 [2] 将大…

【origin】负载牵引的Smith圆图

【origin】负载牵引的Smith圆图 1.从ADS导入数据到origin2.smith圆图3.扩展到多组线4.参考资料 1.从ADS导入数据到origin export导出为txt&#xff0c;得到的是幅相值&#xff0c;复制到excel如下图&#xff0c;有多根类似格式的线&#xff0c;只需要复制DE列到origin中 复制到…

基于微信小程序的音乐平台 开源项目

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、系统展示 四、核心代码4.1 查询单首音乐4.2 新增音乐4.3 新增音乐订单4.4 查询音乐订单4.5 新增音乐收藏 五、免责说明 一、摘要 1.1 项目介绍 基于微信小程序JAVAVueSpringBootMySQL的音乐平台&#xff0c;包含了音乐…

vue3 useAttrs的使用场景,提取共有props

1 场景 多个类似组件都需要传参data&#xff0c;用于请求接口或者处理数据&#xff0c;想让组件干净整洁&#xff0c;把参数data提出来 2 方法 选项式 可以使用mixin混入或者extends继承&#xff08;略&#xff09; 组合式 可以使用hook 无脑式踩坑&#xff08;如下代码…

领域驱动设计应用之WebAPI

领域驱动设计应用之WebAPI 此篇文章主要讲述领域驱动设计在WebApi中的应用&#xff0c;以及设计方式&#xff0c;这种设计的原理以及有点。 文章目录 领域驱动设计应用之WebAPI前言一、相对于传统设计模式的有点二、WebAPI对接中的使用案例业务拆分父类设计HttpResponse(返回)…

从技术走向管理

管理是可以通过后天的学习掌握的一项技能&#xff0c;但同时管理这条路每个人走的都不一样&#xff0c;因为没有一个固定的标准而且前面的路有很多未知和不确定性&#xff0c;所以不同的人对管理的理解、定义以及怎么做管理都会有不同的想法、做法。 很多一线的技术人员通常都…

一文学会服务网格与istio使用

服务网格 现代应用程序通常被设计成微服务的分布式集合&#xff0c;每个服务执行一些离散的业务功能。服务网格是专门的基础设施层&#xff0c;包含了组成这类体系结构的微服务网络。 服务网格不仅描述了这个网络&#xff0c;而且还描述了分布式应用程序组件之间的交互。所有在…

qt学习:多界面跳转+信号+槽函数

目录 概念 分类 多界面编程思路 新建界面 注意 头文件 无数据传输跳转界面 有数据传输跳转界面 对象公有接口 界面之间数据传输 信号与槽函数进行数据传输跳转界面 信号: 槽: 概念 格式1 关联信号和发送信号 格式2 通信步骤 自定义信号和槽函数 总结 实…

手写webpack的loader

一、概念 帮助webpack将不同类型的文件转换为webpack可识别的模块。 二、Loader执行顺序 分类 pre&#xff1a;前置loadernormal&#xff1a;普通loaderinline&#xff1a;内联loaderpost&#xff1a;后置loader 执行顺序 4类loader的执行顺序为per>normal>inline&…

【贪心】重构字符串

/*** 思路&#xff1a;如果s长度小于2&#xff0c;直接返回s&#xff0c;假设字符串s的长度为n。* n为偶数&#xff0c;如果字符串中的某个字符数量超过 n/2 则肯定会存在相邻的字符。* n为奇数&#xff0c;如果字符串中的某个字符的数量超过 &#xff08;n1&am…

绘图工具用的好,头发掉的少

程序员不管是在学习&#xff0c;还是工作过程中&#xff0c;很多时候都需要画图&#xff0c;如产品分析、架构设计、方案选型等&#xff0c;良好的绘图不仅可以让绘图者的思路清晰&#xff0c;也可以让聆听者更好的理解。用好画图&#xff0c;升职加薪少不了&#xff01;今天介…