深入剖析开源大模型+Langchain框架,智能问答系统性能下降原因

大模型(LLM)相关理论研究与工程实践随着 GPT3 的发布,在学术界、工业界大爆发,备受各行各业关注,并涌现出一些赋能行业、促进生产力、生产关系变革的实践。GPT3 [1] 以及斯坦福计算机学院近 100+ 教授联名论文 [2] 将大模型列为第三轮 AI 浪潮,相对于传统的机器学习与深度学习,以 GPT3 为例的大模型涌现出处理各类任务的新范式:zero-shot、few-shot、in-context 等,同时也支持深度学习领域的 finetune,新范式让大模型能够低成本、快速处理各种任务,极大的缩短了数据准备与工程开发流程。

其中,in-context 作为随着大模型涌现的范式,被大规模的应用到各种知识库问答、资料汇总等领域中,开源社区对 in-context 也非常活跃地响应,推出了 langchain [3]、向量数据库 [4] 等系列优秀框架与技术基座。

但是,基于 langchain + 开源大模型在实践过程中也会遇到系列不尽人意的问题,本文将深入剖析 langchain + 开源大模型用于搭建基于公司语料库(iwiki、oncall、码客)上的缺陷,剖析利用开源方案进行实践过程中性能下降的根本原因。

喜欢本文,记得收藏、关注、点赞。

文章目录

    • 通俗易懂讲解大模型系列
      • 常规方案
        • 架构
        • 数据服务
        • 在线 QA 服务
        • 大模型
        • 串联
      • openAI 与开源 LLM
      • 总结

通俗易懂讲解大模型系列

  • 用通俗易懂的方式讲解:大模型 RAG 在 LangChain 中的应用实战

  • 用通俗易懂的方式讲解:一文讲清大模型 RAG 技术全流程

  • 用通俗易懂的方式讲解:如何提升大模型 Agent 的能力?

  • 用通俗易懂的方式讲解:使用 Mistral-7B 和 Langchain 搭建基于PDF文件的聊天机器人

  • 用通俗易懂的方式讲解:ChatGPT 开放的多模态的DALL-E 3功能,好玩到停不下来!

  • 用通俗易懂的方式讲解:结合检索和重排序模型,改善大模型 RAG 效果明显

  • 用通俗易懂的方式讲解:基于扩散模型(Diffusion),文生图 AnyText 的效果太棒了

  • 用通俗易懂的方式讲解:在 CPU 服务器上部署 ChatGLM3-6B 模型

  • 用通俗易懂的方式讲解:ChatGLM3-6B 功能原理解析

  • 用通俗易懂的方式讲解:使用 LangChain 和大模型生成海报文案

  • 用通俗易懂的方式讲解:一个强大的 LLM 微调工具 LLaMA Factory

  • 用通俗易懂的方式讲解:ChatGLM3-6B 部署指南

  • 用通俗易懂的方式讲解:LangChain Agent 原理解析

  • 用通俗易懂的方式讲解:HugggingFace 推理 API、推理端点和推理空间使用详解

  • 用通俗易懂的方式讲解:使用 LangChain 封装自定义的 LLM,太棒了

  • 用通俗易懂的方式讲解:使用 FastChat 部署 LLM 的体验太爽了

  • 用通俗易懂的方式讲解:基于 Langchain 和 ChatChat 部署本地知识库问答系统

  • 用通俗易懂的方式讲解:使用 Docker 部署大模型的训练环境

  • 用通俗易懂的方式讲解:在 Ubuntu 22 上安装 CUDA、Nvidia 显卡驱动、PyTorch等大模型基础环境

  • 用通俗易懂的方式讲解:Llama2 部署讲解及试用方式

  • 用通俗易懂的方式讲解:LangChain 知识库检索常见问题及解决方案

  • 用通俗易懂的方式讲解:基于 LangChain 和 ChatGLM2 打造自有知识库问答系统

  • 用通俗易懂的方式讲解:代码大模型盘点及优劣分析

  • 用通俗易懂的方式讲解:Prompt 提示词在开发中的使用

  • 用通俗易懂的方式讲解:万字长文带你入门大模型

  • 用通俗易懂的方式讲解:保姆级 Stable Diffusion 部署教程

常规方案

架构

图片

图1 基于 langchain + LLM 做知识问答的常规方案

基于 langchain + 大模型 in-context 能力来搭建智能问答系统的常规方案如上图所示,包含 3 个核心模块:数据服务,在线 QA 服务,以及大模型。下面分别详细说明一下各个模块具体做些什么?他们是如何串联在一起完成整个问答任务的?再反过来看看为什么业界基于 openAI 实践很棒,而如果换成基于开源自研后性能下滑很多?

数据服务

数据对方案的性能影响极其重要,高质量的数据对模型的提升非常显著;但数据处理是一个 caseBycase、包含很多经验与 tricks 的事情,例如文档中的截图、表格、公式、超链接、附件、架构图、流程图、代码片段等等,本文不予以展开分析。

做数据最需要关注的是模型的输入及格式。做知识问答系统本质是自然语言处理的一个任务,因此,数据形态必须是文本,这是最基本的原则,所以如果数据包含非文本类的形态,例如图片(iwiki、码客、oncall 存在大量截图),就需要处理一下,每个人的处理方式和策略不一样,处理得好,最终系统性能会表现好一些。数据服务包含 3 个步骤,格式化(format)、切割(split)、向量化(vectorize)。

  • 格式化。 解析不同源数据(csv、pdf、json、html、markdown、txt 等)到统一格式,并进行预处理与过滤

为什么以及如何进行预处理与过滤?

参考所选 LLM 在训练/ instruction finetune 处理数据方式(去掉特殊字符、换行空格等)同步处理数据。这么做的原因是 LLM in-context 应该和 训练/instruction finetune 的数据处理方式保持一致,可以保证 in-context 效果达到最佳。所以格式化的第二步,和选用的 LLM 相关。

  • 切割(split)。 将格式化的长字符串按照一定策略切分为若干个切片(chunk)。

为什么要进行切割?

看到上述框架图绝大多数人应该有的一个疑问。如果深入思考的话会发现 embedding(text2vec,文本转化为向量)以及 LLM encoder 对输入 tokens 都有限制。embedding 会将一个 text(长字符串)的语义信息压缩成一个向量,这是他的能力,但我们需要重点关注他的局限性,其中之一就是 text 包含的 tokens 有限制,一段话压缩成一个向量是 ok,但一本书压缩成一个向量可能就丢失了绝大多数语义。LLM encoder tokens 的限制在模型结构(利用 next token 进行 pre train)是就定义了,后续也无法更改,而 in-context 本质是把语料注入到 prompt,整个 prompt 不能超过 LLM 的 tokens 限制, 汇总如下公式:

图片

为了确保格式化的语料能够满足上述约束,因此需要切割原始语料。

如何切割?

通常采用固定长度切割(满足上面公式约束下),但固定长度切割容易破坏自然段落的语义,因此需要在上面公式约束与段落语义保留双重约束下,灵活设计方案,切割后的语料片段称为 chunk。

  • 向量化与存储。

为什么进行向量化?

NLP 领域近 10 年来最朴素最广泛应用的一个技术 embedding 就是将 text 的语义信息转为向量表达,从而基于此向量来处理 NLP 领域中的一系列任务,例如通过向量相似性来衡量两句话语义是否一致等。

向量化的评价指标有哪些?

Huggingface 有一个 embedding 的 benchmark,如链接: https://huggingface.co/spaces/mteb/leaderboard 。

图片

图2 huggingface embedding 综合能力排序

业界通常用 embedding 所得向量长度及其在各 NLP 子任务上的准确率来评估 embedding 模型。原则上:embedding 所得向量长度越长越好,过长的向量也会造成 embedding 模型在训练中越难收敛。分类(Classification)、聚合 (Clustering)、语义相似 (Pair Classification)、排序(Reranking)和召回(Retrieval)等子任务常用来评估 embedding 模型的优劣,准确率越高,embedding 的性能越好。

向量如何存储与检索?

向量的存储与检索是一门特别复杂的课题,涉及向量检索(包含很多相似性度量算法,向量压缩等知识)和向量存储,当前火热的向量数据库方向就是因此而生,在规模不大的情况下用 faiss 做检索够用了,未来有机会将专题就这个点开展分析,这里不予以赘述**。**

在线 QA 服务

在线 QA 服务是串联大模型与存储向量数据库之间的纽带,大模型不能将数据库所有数据拿去做 in-context,实际上,大模型 in-context 能包含的 chunks 十分有限,在线QA服务核心就是挑选出合适的 chunks 给大模型。在线 QA 服务通过企微、webapi等方式对外提供交互,包含 3 个核心功能模块:用户问题向量化、prompt 组装、筛选 chunks。其中,在线 QA 服务核心在于筛选 chunks,这一步对整体性能至关重要。

  • 用户问题向量化。

同数据服务 chunks 向量化一样,采用同一个 embedding 模型对用户问题进行向量化。

  • prompt 组装。

将用户问题,筛选出的 chunks 组装成 prompt,prompt 即为大模型的输入,整个 prompt 不超过大模型输入 tokens 长度的限制,以 openAI gpt-3.5-turbo 为例,输入 tokens 限制为 4096,假设每个 chunks 固定长度为400,不考虑 prompt 不变字符串的长度,gpt-3.5-turbo 最多可以放 10 个 chunks 进行 in-context 学习。

  • 筛选 chunks。

在用户问题与 chunks 经同一 embedding 模型将 text 转为向量:

图片

(M 是 chunks 的总数量),langchain 给的方案是通过计算之间:

图片

的相似度(cos、BM25、knn、欧氏距离等)并倒排来决定哪些 chunks 被召回。本质上前者是 Question,而后者是 Answer,因此 langchain 是利用了 embedding 在召回(Retrieval)任务上的能力来筛选 chunks, 如图 2 红色垂直列所示,这符合问答系统的初衷。**非常值得注意的是:embedding 在召回任务上的准确率是其在所有 NLP 任务重最差的一个,QA 任务在语义空间上的表达远不如分类、聚合等任务。**常规方案中,langchain 直接召回排序 top8 chunks 给大模型进行 in-context 推理 (gpt-3.5-turbo 4096 tokens)。

大模型

问答系统使用了 LLM in-context 的推理能力,将筛选出来的若干个 chunks 传给大模型,让大模型基于这些 chunks 来回答用户问题,有个限制是整个 prompt 的 tokens 长度不要超过 LLM 输入 tokens 限制,不然 GPU 会报 OOM。LLM in-context 的推理能力本质是其在阅读理解,因此,选择问答系统的 LLM 需要重点关注其在阅读理解任务上的性能,好的 LLM 可以非常精准的从一组 chunks 中寻找并总结出用户 query 对应的答案。

串联

将上述各功能模块的逻辑串联一起,从整体的视角观察一下 langchain + 大模型做问答系统整个方案的实践。

LLM 需要上游提供一些语料 chunks,结合 chunks、用户query、自身阅读理解能力完成知识问答。对问答准确率影响最大的因素是 chunks 的质量(是否包含正确答案),LLM 自身阅读理解能力。同时, LLM 输入 token 长度限制导致 prompt 中 chunks 的数量有一定约束,原则上,chunks 数量越多,包含正确答案的概率越大,同时也导致模型的推理速度变慢。

LLM 上游主要目的是召回出候选的 chunks,常规方案使用的是 embedding 处理召回任务的能力,对于一步召回直接注入到 prompt(无精排逻辑),假如传给 LLM prompt k 个 chunks,那么对于召回来说,只需要相似性算法倒序排序前 k 个 chunk 中包含正确答案即可,即关注 embedding 在召回任务中 TopK 的准确率。

综上所属,常规方案中对智能问答系统准确率影响最大的几个因素如下:

1、embedding 在 Retrieval 任务中 TopK 的准确率 (受 embedding 模型自身能力、Retrieval 算法、K等三个因素影响)

2、K 的大小,K 原则越大越好,但是 LLM 的 tokens 限制导致 K 由不能太大。

(上述 1、2 的都是为了从数据库海量 chunks 中选择出包含正确答案的 chunks)

3、LLM 自身阅读理解与总结推理能力。

openAI 与开源 LLM

为什么 langchain + openAI 全家桶准确率特别高,换成开源 LLM 性能下降很多?

使用 openAI 全家桶构建智能问答系统必用两个能力:openAI 的 embedding 与 gpt-3.5-turbo 模型。

图 2 huggingface embedding benchmark 中 openAI 发布的 text-embedding-ada-002 (2021/09 )最大输入 tokens 限制是 8191,输出维度是 1536,在 Retrieval 中 top1 的准确率是 49.25%。这组数据表明 openAI embedding 模型具有非常棒的语义表达能力,能够非常好的将问题、答案映射到相近的语义向量空间中,可以说该 embedding 模型是业界最强的映射 QA 能力的模型。

openAI 的商用模型 gpt-3.5-turbo 输入 tokens 限制为 4096,如果切片每个 chunks 长度为 400,embedding 可以召回近 10 个候选 chunks,即 text-embedding-ada-002 模型 top10 的准确率即可近似为问答系统的整体准确率(做信息流推荐召回排序的同学应该了解,top1 准确率接近50%,top10 的准确率会很惊人),而 gpt-3.5-turbo 自身的阅读理解也高出开源 LLM 一个水平,能够精准的从所有的 chunks 中找到准确答案。

综上: openAI 全家桶中 embedding 在 Retrieval 任务的高性能、gpt-3.5-turbo 的阅读理解能力,输入 tokens 够长等三个重要因素,是常规基于 langchain + openAI 做智能问答系统,用用户问题向量与语料内容向量进行相似性计算并直接召回给 prompt,最终能够取得非常好效果的重要原因。

openAI embedding 与 gpt-3.5-turbo 强劲性能掩盖了一些问题,这些问题在基于开源 LLM 做自研问答系统时被暴露,直接导致开源 LLM 方案性能下降。

openAI 全家桶与开源 LLM 方案的对比如下:

图片

在 Retrieval 任务的语义关联映射上,openAI 的 embedding 模型能力远高于开源 LLM(15 个百分点以上);LLM token 的限制,导致采用 openAI 召回的 chunks 数量比开源 LLM 多一倍;同时在阅读理解能力上,gpt-3.5-turbo 能够非常好的从一系列 chunks 中找到并总结出最佳答案,而开源 LLM 在这方面能力稍微逊色一些。综上,选择目前开源最好的组合方案:llama 的 vicuna13B 与中文领域开源最好的 embedding 模型 GanymedeNil/text2vec-large-chinese · Hugging Face,采用常规的 langchain + openAI 技术框架,性能会下降很多。

总结

通过全文分析,总结出开源 LLM 大模型在 openAI + langchain 通用的技术方案下,性能不佳的原因主要如下:

  • 使用 Question-Answer (embedding Retrieval) 作为召回排序是性能不佳最根本的原因,开源的中文 embedding 模型在 Retrieval 任务上表现不佳。

  • 模型输入 tokens 限制导致候选的 chunks 数量少于 openAI 模型近一倍,是整体准确率低于 openAI 全家桶的一个重要原因。

  • 模型自身在阅读理解与总结任务上的不足,也对整体性能有一定的影响。

洞悉问题是进步的第一步,本文重点从 embedding 与 LLM 两个角度来剖析 langchain + 开源大模型搭建智能问答系统性能下降的原因,下篇也将从这两个角度逐步分析如何基于 lanchain + 开源大模型搭建高性能智能问答系统。

引文

[1] Brown T, Mann B, Ryder N, et al. Language models are few-shot learners[J]. Advances in neural information processing systems, 2020, 33: 1877-1901.

[2] Bommasani R, Hudson D A, Adeli E, et al. On the opportunities and risks of foundation models[J]. arXiv preprint arXiv:2108.07258, 2021.

[3] GitHub - hwchase17/langchain: ⚡ Building applications with LLMs through composability ⚡

[4] GitHub - milvus-io/milvus: A cloud-native vector database, storage for next generation AI applications

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/316734.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【origin】负载牵引的Smith圆图

【origin】负载牵引的Smith圆图 1.从ADS导入数据到origin2.smith圆图3.扩展到多组线4.参考资料 1.从ADS导入数据到origin export导出为txt,得到的是幅相值,复制到excel如下图,有多根类似格式的线,只需要复制DE列到origin中 复制到…

基于微信小程序的音乐平台 开源项目

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、系统展示 四、核心代码4.1 查询单首音乐4.2 新增音乐4.3 新增音乐订单4.4 查询音乐订单4.5 新增音乐收藏 五、免责说明 一、摘要 1.1 项目介绍 基于微信小程序JAVAVueSpringBootMySQL的音乐平台,包含了音乐…

vue3 useAttrs的使用场景,提取共有props

1 场景 多个类似组件都需要传参data,用于请求接口或者处理数据,想让组件干净整洁,把参数data提出来 2 方法 选项式 可以使用mixin混入或者extends继承(略) 组合式 可以使用hook 无脑式踩坑(如下代码…

领域驱动设计应用之WebAPI

领域驱动设计应用之WebAPI 此篇文章主要讲述领域驱动设计在WebApi中的应用,以及设计方式,这种设计的原理以及有点。 文章目录 领域驱动设计应用之WebAPI前言一、相对于传统设计模式的有点二、WebAPI对接中的使用案例业务拆分父类设计HttpResponse(返回)…

从技术走向管理

管理是可以通过后天的学习掌握的一项技能,但同时管理这条路每个人走的都不一样,因为没有一个固定的标准而且前面的路有很多未知和不确定性,所以不同的人对管理的理解、定义以及怎么做管理都会有不同的想法、做法。 很多一线的技术人员通常都…

一文学会服务网格与istio使用

服务网格 现代应用程序通常被设计成微服务的分布式集合,每个服务执行一些离散的业务功能。服务网格是专门的基础设施层,包含了组成这类体系结构的微服务网络。 服务网格不仅描述了这个网络,而且还描述了分布式应用程序组件之间的交互。所有在…

qt学习:多界面跳转+信号+槽函数

目录 概念 分类 多界面编程思路 新建界面 注意 头文件 无数据传输跳转界面 有数据传输跳转界面 对象公有接口 界面之间数据传输 信号与槽函数进行数据传输跳转界面 信号: 槽: 概念 格式1 关联信号和发送信号 格式2 通信步骤 自定义信号和槽函数 总结 实…

手写webpack的loader

一、概念 帮助webpack将不同类型的文件转换为webpack可识别的模块。 二、Loader执行顺序 分类 pre:前置loadernormal:普通loaderinline:内联loaderpost:后置loader 执行顺序 4类loader的执行顺序为per>normal>inline&…

【贪心】重构字符串

/*** 思路:如果s长度小于2,直接返回s,假设字符串s的长度为n。* n为偶数,如果字符串中的某个字符数量超过 n/2 则肯定会存在相邻的字符。* n为奇数,如果字符串中的某个字符的数量超过 (n1&am…

绘图工具用的好,头发掉的少

程序员不管是在学习,还是工作过程中,很多时候都需要画图,如产品分析、架构设计、方案选型等,良好的绘图不仅可以让绘图者的思路清晰,也可以让聆听者更好的理解。用好画图,升职加薪少不了!今天介…

大数据技术之Hudi

第1章 Hudi概述 1.1 Hudi简介 Apache Hudi(Hadoop Upserts Delete and Incremental)是下一代流数据湖平台。Apache Hudi将核心仓库和数据库功能直接引入数据湖。Hudi提供了表、事务、高效的upserts/delete、高级索引、流摄取服务、数据集群/压缩优化和…

PPT文档怎么转换PDF?一个方法教你快速实现

在我们的办公、学习中难免会遇到需要将ppt转pdf文件的需求。现在的网络中有各种各样的PDF转换工具,有些操作很复杂,有些需要下载软件非常麻烦。接下来,给大家分享一款草最简单还不用下载软件的PPT转PDF(https://www.yasuotu.com/p…

Linux中常使用的命令之ls、cd、pwd、mkdir、rmdir

ls: 列出目录 cd:切换目录 pwd:显示目前的目录 mkdir:创建一个新的目录 -m :配置文件的权限-p :帮助你直接将所需要的目录(包含上一级目录)递归创建起来! rmdir:删除一个空的目录 注意这…

2024年该如何招聘科技人员

我的新书《Android App开发入门与实战》已于2020年8月由人民邮电出版社出版,欢迎购买。点击进入详情 过去几年科技领域发生了令人难以置信的动荡。我可以有把握地说,今天的就业市场比 2000 年代我第一次成为开发人员时更具挑战性。人工智能的繁荣与前所…

conda环境下cannot write keep file问题解决

1 问题描述 conda环境下执行如下命令报错: pip install githttps://github.com/wenet-e2e/wenet.git 错误信息如下: (pt) PS D:\code\ptcontainer> pip install githttps://github.com/wenet-e2e/wenet.git Looking in indexes: http://pypi.doub…

Qt OpenGL初探 - 画坐标轴

Qt OpenGL初探 - 画坐标轴 引言一、过程详解1.1 项目创建1.2 实现细节 二、核心代码三、官方文档3.1 官网地址3.2 官方手册的使用 引言 Qt OpenGL模块可以很方便地将OpenGL应用在Qt程序中,本文使用其画了一个3D坐标轴(见上图),并详细讲解了具体的编码过程与官方手册…

优化的实时换脸项目——DeepFaceLive

DeepFaceLive是一款基于人工智能技术的换脸工具,可以实现实时面部捕捉和换脸效果。它利用深度学习和计算机视觉算法,能够以惊人的准确度和速度将脸部特征无缝地映射到任何人的脸上。DeepFaceLive的特点是可以实时换脸,让用户通过网络摄像头应…

JVM基础(12)——G1调优

作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO 联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬 学习必须往深处挖&…

BitMap源码解析

文章目录 前言数据结构添加与删除操作 JDK中BitSet源码解析重要成员属性初始化添加数据清除数据获取数据size和length方法集合操作:与、或、异或优缺点 前言 为什么称为bitmap? bitmap不仅仅存储介质以及数据结构不同于hashmap,存储的key和v…

没啥特长又想搞钱的进:2024副业小项目推荐

利用副业赚钱,绝对不是找个项目就做那么简单。实际上,网上很多副业项目都是看着高大上,做起来还不如送外卖、打零工实在。思路决定出路,你需要的不是具体的副业项目,你需要的是副业思维。 思维一;经验的二次利用比如你…