BikeDNA(四)初始化参考数据

BikeDNA(四)初始化参考数据

这本笔记本:

  • 加载定义研究区域的多边形,然后为研究区域创建网格叠加。
  • 加载参考数据。
  • 处理参考数据以创建分析所需的网络结构和属性。
先决条件和条件 输入/输出

config.yml 必须提前设置。

此笔记本的输出文件保存到 …/data/REFERENCE/[study_area]/processed/ 子文件夹中,并在笔记本 2b、3a 和 3b 中使用。

当根据参考数据创建网络时,每条边都会分配一个唯一的边 ID。 要将边缘 ID 与原始数据中的 ID 相关联,请使用具有网络边缘的数据帧 ref_edges 和 <span style="font-family:courier; ”ref_edges_simplified,可以使用。

加载研究区域数据并创建分析网格

这一步:

  • 从配置文件“config.yml”加载分析设置。
  • 读取研究区域的数据。
  • 创建研究区域的网格覆盖,网格单元大小在“config.yml”中定义。
Troubleshooting

如果在下面的单元格中位于 src 文件夹中的函数未正确加载:检查 pip install -e . 是否已运行 成功(请参阅 README.md 中的说明)。

# Load libraries, settings and data

import pickle
import warnings

import contextily as cx
import geopandas as gpd
import matplotlib.pyplot as plt
import networkx as nx
import osmnx as ox
import numpy as np

from src import evaluation_functions as eval_func
from src import graph_functions as graph_func
from src import simplification_functions as simp_func
from src import plotting_functions as plot_func

%run ../settings/plotting.py
%run ../settings/yaml_variables.py
%run ../settings/paths.py

warnings.filterwarnings("ignore")

加载研究区域的数据

研究区域由用户提供的多边形定义。 它将用于计算全局结果,即基于研究区域所有数据的质量指标。

# Read polygon for study area

study_area_poly = gpd.read_file(study_area_poly_fp)

if study_area_poly.crs == None:
    print("Please assign a crs to the study area polygon!")

if study_area_poly.crs != study_crs:
    study_area_poly = study_area_poly.to_crs(study_crs)

assert study_area_poly.crs == study_crs

area = study_area_poly.area.values[0]
print(f"The size of the study area is {area / 1000000:.2f} km2.")
The size of the study area is 181.38 km2.
# Plot study area

set_renderer(renderer_map)
print("This study area will be used for the analysis:")

fig, ax = plt.subplots(1, figsize=pdict["fsmap"])
    
study_area_poly.plot(ax=ax, edgecolor=pdict["base"], facecolor='none',alpha=pdict["alpha_back"],hatch='/')

ax.set_axis_off()

cx.add_basemap(ax, crs=study_area_poly.crs, source=cx_tile_1)

ax.set_title(f"{area_name} study area ({area / 1000000:.2f} sqkm)")

plot_func.save_fig(fig, ref_results_static_maps_fp + "area_size_reference")
This study area will be used for the analysis:

在这里插入图片描述

创建分析网格

User configurations

网格用于计算许多质量指标的本地结果,即网格单元级别。 网格单元的单元大小必须在配置文件中指定。 较小的网格单元会增加计算时间,但会给出更精细的结果。 网格单元大小不应小于您预期数据质量实际差异的比例。

# Create and plot grid

set_renderer(renderer_map)
grid = eval_func.create_grid_geometry(study_area_poly, grid_cell_size)

grid["grid_id"] = grid.index

fig, ax = plt.subplots(1, figsize=pdict["fsmap"])

grid_cell_area = (grid_cell_size / 1000) ** 2  # in km2
print(
    f"The grid contains {len(grid)} square cells with a side length of {grid_cell_size} m and an area of {grid_cell_area:.2f} km2."
)
print("This grid will be used for local (grid cell level) analysis:")

grid.plot(ax=ax, facecolor="none", edgecolor=pdict["base"], alpha=pdict["alpha_back"],linewidth=0.5)

ax.set_axis_off()

cx.add_basemap(ax, crs=study_area_poly.crs, source=cx_tile_1)

ax.set_title(
    f"{area_name} study area ({len(grid)} grid cells, side length {grid_cell_size}m)"
)

plot_func.save_fig(fig, ref_results_static_maps_fp + "area_grid_reference")
The grid contains 2088 square cells with a side length of 300 m and an area of 0.09 km2.
This grid will be used for local (grid cell level) analysis:

在这里插入图片描述

加载并预处理参考数据

这一步:

  • 根据参考数据创建网络。
  • 将其投影到所选的 CRS。
  • 将数据剪切到定义研究区域的多边形。
  • 根据几何类型以及是否允许双向行进来测量边缘的基础设施长度。
  • 简化网络。
  • 创建由相交网格单元索引的所有边和节点数据集的副本。

网络数据模型

在 BikeDNA 中,所有输入数据都转换为由节点组成的网络结构。 边代表实际的基础设施,例如自行车道和路径,而节点代表边的起点和终点以及所有交叉路口。 有关更多详细信息,请阅读有关网络数据模型的更多信息。

网络简化

将一组线串转换为网络(图形)格式时,并非所有顶点(节点)都具有相同的含义。 对于边的几何形状,所有节点都用于定义边的形状。 然而,对于网络的拓扑,仅需要那些作为端点或与其他边的交点的节点,而所有其他(所谓的“间隙”)节点不添加任何信息。 为了比较网络中节点和边之间的结构和真实比率,需要简化的网络表示,仅包括端点和交叉点处的节点,或者重要属性值发生变化的位置。 简化网络的另一个优点是节点和边的数量大幅减少,这使得计算例程更快。

请注意,简化函数仅简化并合并具有相同重要属性(例如几何类型、自行车方向和保护级别)值的边。

在这里插入图片描述

非简化网络(左)和简化网络(右)

作为简化例程的一部分,如果同一对节点之间存在多条边(“平行边”或“多重边”),则仅保留其中一条边。

要了解有关此处使用的修改后的 OSMnx 简化 (Boeing, 2017) 的更多信息,我们参考此 GitHub repository其中包含简化函数、逻辑解释和演示。

# Read reference data
org_ref_data = gpd.read_file(reference_fp)

# Create data with LineStrings only defined by end and start coordinate
ref_data = graph_func.unzip_linestrings(org_ref_data, reference_id_col)

# Create column with id called 'osmid'
ref_data["osmid"] = ref_data["new_edge_id"]
ref_data.drop(["new_edge_id"], axis=1, inplace=True)

# Reproject
if ref_data.crs == None:
    print("Please assign a crs to the study area polygon!")

if ref_data.crs != study_crs:
    ref_data = ref_data.to_crs(study_crs)

assert ref_data.crs == study_crs

# Clip reference data to study area poly
ref_data = ref_data.clip(study_area_poly)

ref_data = ref_data[ref_data.geometry.length!=0.0]

# Convert to osmnx graph object
graph_ref = graph_func.create_osmnx_graph(ref_data)

ref_nodes, ref_edges = ox.graph_to_gdfs(graph_ref)

# Overview of data
graph_area = eval_func.get_graph_area(ref_nodes, study_area_poly, study_crs)
print(
    f"The {reference_name} data covers an area of {graph_area / 1000000:.2f} km2."
)
print("\n")

# Classify edges as protected or unprotected
ref_edges = eval_func.define_protected_unprotected(
    ref_edges, ref_bicycle_infrastructure_type
)
for key, value in ref_edges.protected.value_counts().items():
    perc = np.round(100*value/len(ref_edges),2)
    print(f"Edges where the protection level is '{key}': {value} out of {len(ref_edges)} ({perc}%)")
print("\n")

# Summarize attribute values - if there are columns with values for each row instead of a global setting
if bicycle_bidirectional in ref_edges.columns:
    for key, value in ref_edges[bicycle_bidirectional].value_counts().items():
        perc = np.round(100*value/len(ref_edges),2)
        print(f"Edges where 'bicycle_bidirectional' is {key}: {value} out of {len(ref_edges)} ({perc}%)")
else: 
    print("Using global settings for cycling direction.")
print("\n")

if reference_geometries in ref_edges.columns:
    for key, value in ref_edges[reference_geometries].value_counts().items():
        perc = np.round(100*value/len(ref_edges),2)
        print(f"Edges where the geometry type is '{key}': {value} out of {len(ref_edges)}({perc}%)")
else:
    print("Using global settings for geometry type.")
print("\n")

# Add attributes to graph
protected_dict = ref_edges["protected"].to_dict()
nx.set_edge_attributes(graph_ref, protected_dict, "protected")

# Add 'multiple edge' attribute to each edge of the graph
for e in graph_ref.edges:
    graph_ref.edges[e]["multiedge"] = 0

# Count multiple edges and store info at key 0
# (simplification routine keeps only key 0)
for u, v, k in graph_ref.edges:
    if k > 0:
        graph_ref.edges[u, v, 0]["multiedge"] += 1

# Remove geometry attribute (required by simplification function)
for n1, n2, d in graph_ref.edges(data=True):
    d.pop("geometry", None)

# Simplify - the graph is simplified as much as possible, but without combining edges with conflicting values of bicycle infrastructure types
simplify_cols = [reference_geometries, bicycle_bidirectional, "protected"]
simplify_cols = [s for s in simplify_cols if s in ref_edges.columns]
graph_ref_simplified = simp_func.simplify_graph(
    graph_ref, attributes=simplify_cols, remove_rings=False
)

graph_ref = ox.get_undirected(graph_ref)
ref_nodes, ref_edges = ox.graph_to_gdfs(graph_ref)
graph_ref_simplified = ox.get_undirected(graph_ref_simplified)

ref_nodes_simplified, ref_edges_simplified = ox.graph_to_gdfs(graph_ref_simplified)

ref_edges["length"] = ref_edges.geometry.length
ref_edges_simplified["length"] = ref_edges_simplified.geometry.length

# Measure the length of bicycle infrastructure (!=from length of edges)
if (
    reference_geometries not in ["true_geometries", "centerline"]
    and type(bicycle_bidirectional) == str
):

    ref_edges_simplified["infrastructure_length"] = ref_edges_simplified.apply(
        lambda x: eval_func.measure_infrastructure_length(
            edge=x.geometry,
            geometry_type=x[reference_geometries],
            bidirectional=x[bicycle_bidirectional],
            bicycle_infrastructure="yes",
        ),
        axis=1,
    )

elif (
    reference_geometries in ["true_geometries", "centerline"]
    and type(bicycle_bidirectional) == bool
):

    ref_edges_simplified["infrastructure_length"] = ref_edges_simplified.apply(
        lambda x: eval_func.measure_infrastructure_length(
            edge=x.geometry,
            geometry_type=reference_geometries,
            bidirectional=bicycle_bidirectional,
            bicycle_infrastructure="yes",
        ),
        axis=1,
    )


elif (
    reference_geometries in ["true_geometries", "centerline"]
    and type(bicycle_bidirectional) == str
):

    ref_edges_simplified["infrastructure_length"] = ref_edges_simplified.apply(
        lambda x: eval_func.measure_infrastructure_length(
            edge=x.geometry,
            geometry_type=reference_geometries,
            bidirectional=x[bicycle_bidirectional],
            bicycle_infrastructure="yes",
        ),
        axis=1,
    )


elif (
    reference_geometries not in ["true_geometries", "centerline"]
    and type(bicycle_bidirectional) == bool
):

    ref_edges_simplified["infrastructure_length"] = ref_edges_simplified.apply(
        lambda x: eval_func.measure_infrastructure_length(
            edge=x.geometry,
            geometry_type=x[reference_geometries],
            bidirectional=bicycle_bidirectional,
            bicycle_infrastructure="yes",
        ),
        axis=1,
    )

else:
    print(
        f"Invalid data types for the variables reference_geometetries and/or bicycle_bidirectional!"
    )

print(
    f"The length of the {reference_name} network is {ref_edges_simplified.infrastructure_length.sum()/1000 :.2f} km."
)


# Creating coulumns with unique feature id (required by some functions)
ref_edges["edge_id"] = ref_edges.reset_index().index
ref_edges_simplified["edge_id"] = ref_edges_simplified.reset_index().index

ref_id_dict = ref_edges["edge_id"].to_dict()
nx.set_edge_attributes(graph_ref, ref_id_dict, "edge_id")

ref_id_dict_s = ref_edges_simplified["edge_id"].to_dict()
nx.set_edge_attributes(graph_ref_simplified, ref_id_dict_s, "edge_id")

# Saving data to graphs
ref_l_dict = ref_edges["length"].to_dict()
nx.set_edge_attributes(graph_ref, ref_l_dict, "length")

ref_l_dict_s = ref_edges_simplified["length"].to_dict()
nx.set_edge_attributes(graph_ref_simplified, ref_l_dict_s, "length")

ref_il_dict = ref_edges_simplified["infrastructure_length"].to_dict()
nx.set_edge_attributes(graph_ref_simplified, ref_il_dict, "infrastructure_length")
The GeoDanmark data covers an area of 169.76 km2.


Edges where the protection level is 'protected': 46097 out of 53580 (86.03%)
Edges where the protection level is 'unprotected': 7483 out of 53580 (13.97%)


Using global settings for cycling direction.


Using global settings for geometry type.


The length of the GeoDanmark network is 626.48 km.
# Plot global statistics (by network length)

set_renderer(renderer_plot)
ymax = ref_edges.length.sum() * 1.2 /1000 # conversion m to km

# attribute: bidirectional
if bicycle_bidirectional in ref_edges.columns:
    
    x = []
    y = []

    for value in np.unique(ref_edges[bicycle_bidirectional]):
        x.append(str(value))
        y.append(ref_edges[ref_edges[bicycle_bidirectional]==value].length.sum()/1000) # conversion m to km

    plot_func.make_bar_plot(
        data = y,
        bar_labels = x,
        y_label = "Network edge lengths [km]",
        x_positions = [i for i in range(len(x))],
        title = f"{area_name}\n {reference_name} edges by bidirectionality",
        bar_colors = len(x)*[pdict["ref_base"]],
        filepath = ref_results_plots_fp + "edge_global_bidirectional",
        ylim = ymax,
        figsize=pdict["fsbar_small"]
    );

# attribute: protection
x = []
y = []

for value in np.unique(ref_edges.protected):
    x.append(value)
    y.append(ref_edges[ref_edges["protected"]==value].length.sum()/1000) # conversion m to km
    
plot_func.make_bar_plot(
    data = y,
    bar_labels = x,
    y_label = "Network edge lengths [km]",
    x_positions = [i for i in range(len(x))],
    title = f"{area_name}\n {reference_name} edges by infrastructure type",
    bar_colors = len(x)*[pdict["ref_base"]],
    filepath = ref_results_plots_fp + "edge_global_infrastructuretype",
    ylim = ymax,
    figsize=pdict["fsbar_small"]
);

# attribute: bicycle geometries (mapping type)
if reference_geometries in ref_edges.columns:

    x = []
    y = []

    for value in np.unique(ref_edges[reference_geometries]):
        x.append(value)
        y.append(ref_edges[ref_edges[reference_geometries]==value].length.sum()/1000) # conversion m to km

    plot_func.make_bar_plot(
        data = y,
        bar_labels = x,
        y_label = "Network edge lengths [km]",
        x_positions = [i for i in range(len(x))],
        title = f"{area_name}\n {reference_name} edges by mapping type",
        bar_colors = len(x)*[pdict["ref_base"]],
        filepath = ref_results_plots_fp + "edge_global_mappingtype",
        ylim = ymax,
        figsize=pdict["fsbar_small"]
    );

在这里插入图片描述

# Plot network

set_renderer(renderer_map)
fig, ax = plt.subplots(1, figsize=pdict["fsmap"])

ref_edges_simplified.plot(ax=ax, color=pdict["ref_base"], linewidth=pdict["line_base"])
ref_nodes_simplified.plot(ax=ax, color=pdict["ref_emp"], markersize=pdict["mark_emp"])

study_area_poly.plot(ax=ax, edgecolor=pdict["base"], facecolor="None", linewidth=1)

ax.set_axis_off()

cx.add_basemap(ax, crs=study_area_poly.crs, source=cx_tile_2)

ax.set_title(f"{area_name}, {reference_name} network")

plot_func.save_fig(fig, ref_results_static_maps_fp + "area_network_reference")

在这里插入图片描述

# Joining grid cell id to network elements

ref_edges_simp_joined = gpd.overlay(
    ref_edges_simplified.reset_index(), grid, how="intersection", keep_geom_type=True
)
ref_edges_joined = gpd.overlay(
    ref_edges.reset_index(), grid, how="intersection", keep_geom_type=True
)

ref_nodes_simp_joined = gpd.overlay(
    ref_nodes_simplified.reset_index(), grid, how="intersection", keep_geom_type=True
)
ref_nodes_joined = gpd.overlay(
    ref_nodes.reset_index(), grid, how="intersection", keep_geom_type=True
)

# Count features in each grid cell
all_data_ref = [
    ref_edges_joined,
    ref_nodes_joined,
    ref_edges_simp_joined,
    ref_nodes_simp_joined,
]
labels_ref = ["ref_edges", "ref_nodes", "ref_simplified_edges", "ref_simplified_nodes"]

for data, label in zip(all_data_ref, labels_ref):

    df = eval_func.count_features_in_grid(data, label)

    grid = eval_func.merge_results(grid, df, "left")


# Recomputing infrastructure length for data joined to grid
ref_edges_simp_joined["length"] = ref_edges_simp_joined["geometry"].length

if (
    reference_geometries not in ["true_geometries", "centerline"]
    and type(bicycle_bidirectional) == str
):

    ref_edges_simp_joined["infrastructure_length"] = ref_edges_simp_joined.apply(
        lambda x: eval_func.measure_infrastructure_length(
            edge=x.geometry,
            geometry_type=x[reference_geometries],
            bidirectional=x[bicycle_bidirectional],
            bicycle_infrastructure="yes",
        ),
        axis=1,
    )

elif (
    reference_geometries in ["true_geometries", "centerline"]
    and type(bicycle_bidirectional) == bool
):

    ref_edges_simp_joined["infrastructure_length"] = ref_edges_simp_joined.apply(
        lambda x: eval_func.measure_infrastructure_length(
            edge=x.geometry,
            geometry_type=reference_geometries,
            bidirectional=bicycle_bidirectional,
            bicycle_infrastructure="yes",
        ),
        axis=1,
    )

elif (
    reference_geometries in ["true_geometries", "centerline"]
    and type(bicycle_bidirectional) == str
):

    ref_edges_simp_joined["infrastructure_length"] = ref_edges_simp_joined.apply(
        lambda x: eval_func.measure_infrastructure_length(
            edge=x.geometry,
            geometry_type=reference_geometries,
            bidirectional=x[bicycle_bidirectional],
            bicycle_infrastructure="yes",
        ),
        axis=1,
    )


elif (
    reference_geometries not in ["true_geometries", "centerline"]
    and type(bicycle_bidirectional) == bool
):

    ref_edges_simp_joined["infrastructure_length"] = ref_edges_simp_joined.apply(
        lambda x: eval_func.measure_infrastructure_length(
            edge=x.geometry,
            geometry_type=[reference_geometries],
            bidirectional=bicycle_bidirectional,
            bicycle_infrastructure="yes",
        ),
        axis=1,
    )

else:
    print(
        f"Invalid data types for the variables reference_geometries and/or bicycle_bidirectional!"
    )

assert round(ref_edges_simplified.infrastructure_length.sum() / 1000, 1) == round(
    ref_edges_simp_joined.infrastructure_length.sum() / 1000, 1
)
# Save reference data
exec(open("../settings/save_refdata.py").read())
GeoDanmark nodes and edges saved successfully!
GeoDanmark networks saved successfully!
Reference grid saved successfully!

from time import strftime
print("Time of analysis: " + strftime("%a, %d %b %Y %H:%M:%S"))
Time of analysis: Mon, 18 Dec 2023 20:19:22

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/315722.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

uniapp 查找不到uview-ui文件怎么办?

用官方的方式总是报&#xff1a;文件查找失败&#xff1a;uview-ui at main.js 解决方案&#xff1a; 1.先安装uview-ui npm install uview-ui 下载成功是这样的&#xff1a; 而不是这样的&#xff1a; 这样的原因是你的项目里没有package.json包&#xff0c;先执行 npm …

Ps:操控变形

Ps菜单&#xff1a;编辑/操控变形 Edit/Puppet Warp 操控变形 Puppet Warp命令能够借助网格随意扭曲特定图像区域&#xff0c;同时可保持其他区域不变。 其应用范围小至精细的图像修饰&#xff08;如发型设计&#xff09;&#xff0c;大至总体的变换&#xff08;如重新定位手臂…

Ftrans飞驰云联荣获“CSA 2023安全创新奖”

2023年12月21日&#xff0c;第七届云安全联盟大中华区大会在深圳成功举办。会上&#xff0c;CSA大中华区发布了多个研究成果并进行 CSA 2023年度颁奖仪式&#xff0c;Ftrans飞驰云联以其突出的技术创新能力和广泛的市场应用前景&#xff0c;荣获备受瞩目的“CSA 2023安全创新奖…

watchdog,一个无敌的 Python 库

更多Python学习内容&#xff1a;ipengtao.com 大家好&#xff0c;今天为大家分享一个无敌的 Python 库 - watchdog。 Github地址&#xff1a;https://github.com/gorakhargosh/watchdog 在软件开发和系统管理领域&#xff0c;经常需要监控文件和目录的变化&#xff0c;以便在文…

JDBC PrepareStatement 的使用(附各种场景 demo)

在 Java 中&#xff0c;与关系型数据库进行交互是非常常见的任务之一。JDBC&#xff08;Java Database Connectivity&#xff09;是 Java 平台的一个标准 API&#xff0c;用于连接和操作各种关系型数据库。其中&#xff0c;PreparedStatement 是 JDBC 中的一个重要接口&#xf…

abaqus重新打开之后自定义的工具栏状态恢复默认的解决办法

在自定义工具栏之后&#xff0c;点击&#xff1a; File——Save Display Options——勾选Current&#xff0c;点击OK。 中文版&#xff1a;文件-保存显示选项-目录选择当前目录&#xff0c;点击确定。 重新打开abaqus之后发现工具栏是自己定义的。 另&#xff1a; 1. 视口注…

brpc: a little source code

之前在https://www.yuque.com/treblez/qksu6c/nqe8ip59cwegl6rk?singleDoc# 《olap/clickhouse-编译器优化与向量化》中我谈过brpc的汇编控制bthread。本文就来看一下brpc作为一个高性能的rpc实现&#xff0c;除了自定义线程栈之外&#xff0c;代码还有什么优秀之处。 因为时间…

# C++系列-第3章循环结构-28-累加

在线练习&#xff1a; http://noi.openjudge.cn/ https://www.luogu.com.cn/ 累加 奥运奖牌计数 题目描述 2008 2008 2008 年北京奥运会&#xff0c;A 国的运动员参与了 n n n 天的决赛项目 ( 1 ≤ n ≤ 100 ) (1 \le n \le 100) (1≤n≤100)。现在要统计一下 A 国所获得的…

uniapp小程序超出一行显示...并展示更多按钮

注意:全部标签需要浮动在父盒子右边哦 循环获取所有需要展示数据标签的高度 this.goods this.goods.map(item > ({...item,showBtn: false}));this.$nextTick(() > {uni.createSelectorQuery().in(this).selectAll(".cart-info").boundingClientRect((data)…

亚马逊云科技 WAF 部署小指南(五):在客户端集成 Amazon WAF SDK 抵御 DDoS 攻击...

方案介绍 在 WAF 部署小指南&#xff08;一&#xff09;中&#xff0c;我们了解了 Amazon WAF 的原理&#xff0c;并通过创建 WEB ACL 和托管规则防护常见的攻击。也了解了通过创建自定义规则在 HTTP 请求到达应用之前判断是阻断还是允许该请求。在 Amazon WAF 自定义规则中&am…

【ACL 2023】 The Art of Prompting Event Detection based on Type Specific Prompts

【ACL 2023】 The Art of Prompting: Event Detection based on Type Specific Prompts 论文&#xff1a;https://aclanthology.org/2023.acl-short.111/ 代码&#xff1a;https://github.com/VT-NLP/Event_APEX Abstract 我们比较了各种形式的提示来表示事件类型&#xff0…

STM32CubeMX配置STM32G071UART+DMA收发数据(HAL库开发)

时钟配置HSI主频配置64M 配置好串口&#xff0c;选择异步模式 配置DMA TX,RX,选择循环模式。 NVIC中勾选使能中断 勾选生成独立的.c和h文件 配置好需要的开发环境并获取代码 串口重定向勾选Use Micro LIB main.c文件修改 增加头文件和串口重定向 #include <string.h&g…

thinkphp6报错Driver [Think] not supported.

thinkphp6报错Driver [Think] not supported. 问题解决方法测试 问题 直接使用 View::fetch();渲染模板报错 解决方法 这个报错是由于有安装视图驱动造成的 运行如下命令安装即可 composer require topthink/think-view官方文档中是这么写的 视图功能由\think\View类配合视…

Python集合(set)

目录 集合创建集合访问集合向集合中添加和删除元素集合的 交集&#xff0c;并集&#xff0c;差集运算**交集****并集****差集** 集合方法 集合 集合是无序和无索引的集合。在 Python 中&#xff0c;集合用花括号编写。 创建集合 创建集合&#xff1a; thisset {"a"…

若依在表格中如何将字典的键值转为中文

文章目录 一、需求&#xff1a;二、问题解决步骤1、给需要转换的列绑定formatter属性2、获取字典项3、编写formatter属性绑定的方法 一、需求&#xff1a; 后端有时候返回的是字典的键值&#xff0c;在前端展示时需要转成中文值 后端返回的是dictValue&#xff0c;现在要转换…

《设计模式的艺术》笔记 - 简单工厂模式

介绍 定义一个工厂类&#xff0c;它可以根据参数的不同返回不同类的实例&#xff0c;被创建的实例通常都具有相同的父类。因为在简单工厂模式中用于创建实例的方法是静态方法&#xff0c;因此简单工厂模式又被称为静态工厂方法模式&#xff0c;属于类创建型模式 实现 class Pr…

Java学习,一文掌握Java之SpringBoot框架学习文集(8)

&#x1f3c6;作者简介&#xff0c;普修罗双战士&#xff0c;一直追求不断学习和成长&#xff0c;在技术的道路上持续探索和实践。 &#x1f3c6;多年互联网行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责人。 &#x1f389;欢迎 &#x1f44d;点赞✍评论…

顺序图作业

顺序图作业 一. 简答题&#xff08;共7题&#xff0c;100分&#xff09; (简答题) 交互是什么&#xff1f;请举 2-3 个交互的实际例子。 正确答案&#xff1a; 一次交互就是指在特定语境中&#xff0c; 为了实现某一个目标&#xff0c; 而在一组对象之间进行交换的一组 消息所…

如何为数据保护加上“安全锁”?

伴随着数字经济的日趋活跃&#xff0c;数据安全和隐私保护成为了各国政府和企业都十分重视的问题&#xff0c;纷纷加强了数据安全防护。但实际上&#xff0c;近几年数据泄露问题接连不断&#xff0c;虽然没有造成严重的后果&#xff0c;但也足以证明目前数据安全防护的紧迫性。…

Virtual Box安装Kali Linux 虚拟机

一、Kali Linux —— 安装和配置 Kali Linux 是道德黑客最好的安全软件包之一&#xff0c;包含一组按类别划分的工具。它是一个开源的系统&#xff0c;其官方网页是https://www.kali.org。 一般来说&#xff0c;Kali Linux 可以作为操作系统安装在机器上。Kali Linux提供了更…