统计学-R语言-3

文章目录

  • 前言
  • 给直方图增加正态曲线的不恰当之处
  • 直方图与条形图的区别
  • 核密度图
  • 时间序列图
  • 洛伦茨曲线
    • 计算绘制洛伦茨曲线所需的各百分比数值
    • 绘制洛伦茨曲线
  • 练习


前言

本篇文章是介绍对数据的部分图形可视化的图型展现。


给直方图增加正态曲线的不恰当之处

需要注意的是,给直方图拟合正态分布曲线并非总是适用,有时甚至是荒谬的,容易产生误导。合理的做法是为直方图拟合一条核密度估计曲线,它是数据实际分布的一种近似描述。
下面通过一个实际例子说明给直方图拟合正态分布曲线的荒谬之处:
根据美国黄石国家公园(Yellowstone National Park)老忠实间歇喷泉(Old Faithful Geyser)数据绘制的直方图,并在直方图中分别增加了核密度估计曲线和正态分布曲线。

par(mai=c(.8,.8,.1,.1),cex=.8)
hist(faithful$eruptions, probability=TRUE, xlab="喷发持续时间",breaks=20, col="light blue",main="")
rug(faithful$eruptions)
lines(density(faithful$eruptions, bw=.1), type='l', lwd=2, col='red')
points(quantile(faithful$eruptions),c(0,0,0,0,0),lwd=5,col="red2")
points(mean(faithful$eruptions),c(0),lwd=8,col=4)
curve(dnorm(x,mean=mean(faithful$eruptions),sd=sd(faithful$eruptions)),add=T,col="blue",lwd=2,lty=6)

在这里插入图片描述
图显示有两个明显的峰值,用核密度估计曲线可清晰地看出喷发持续时间属于双峰分布,可见为该直方图拟合正态分布曲线的荒之处。

直方图与条形图的区别

条形图中的每一矩形表示一个类别,其宽度没有意义;
直方图的宽度则表示各组的组距分组数据具有连续性,直方图的各矩形通常是连续排列;
而条形图则是分开排列条形图主要用于展示类别数据,而直方图则主要用于展示数值数据。

核密度图

核密度估计(density estimation)是根据一定的核(kernel)函数和适当的带宽(band-width)对数据的分布密度做出的估计。
核密度图(kernel density plot)是对核密度估计的一种描述,利用该图可看出数据的实际分布状况.以例2-3的数据为例,绘制6名运动员射击成绩核密度估计曲线。
R代码和结果如下所示:

# 用lattice包绘制核密度曲线
load("C:/example/ch2/example2_3_1.RData")
library(lattice)
dp1<-densityplot(~射击环数|运动员,data=example2_3_1,col="blue",cex=0.4,par.strip.text=list(cex=0.6),sub="(a)栅格图")

# 用lattice包绘制例2-3的核密度比较曲线
dp2<-densityplot(~射击环数,group=运动员,data=example2_3_1,auto.key=list(columns=1,x=0.01,y=0.95,cex=0.6),cex=0.4,sub="(b)比较图")
# 组合latiice包的绘图
plot(dp1,split=c(1,1,2,1))
plot(dp2,split=c(2,1,2,1),newpage=F)

在这里插入图片描述
该图显示了每名运动员射击成绩分布的核密度估计曲线(图中的“ o”为扰动点)。

load("C:/example/ch2/example2_3_1.RData")
attach(example2_3_1)
library(sm)
par(cex=0.8,mai=c(.7,.7,.1,.1))
sm.density.compare(射击环数,运动员,lty=1:6,col=c("black","blue","brown","darkgreen","green","red"),lwd=2)
legend("topleft",legend=levels(运动员),lty=1:6,,col=c("black","blue","brown","darkgreen","green","red"))

在这里插入图片描述
该图显示了6名运动员射击成绩分布的核密度估计比较曲线容易看出,6名运动员射击成绩均呈现左偏分布。这是因为射击环数的中心点是10.99.环数的上界已被限定,而下界(0环)则远离中心点.因此,下界值方向出现远离中心点的环数的可能性大于上界值方向。此外,从6名运动员射击成绩的分布看,除了基思桑德森,其他运动员射击成绩的分布中心均很接近最高环数(10.99)。

时间序列图

load("C:/example/ch2/example2_9.RData")
example2_9<-ts(example2_9,start=2000)
par(mai=c(0.7,0.7,0.1,0.1),cex=0.8,fg=2) 
plot(example2_9[,2],lwd=2,ylim=c(2000,30000),xlab="年份",ylab="居民消费水平",type="n")
grid(col="gray60")
points(example2_9[,2],type='o',lwd=2,ylim=c(2000,30000),xlab="年份",ylab="居民消费水平")
lines(example2_9[,3],type='b',lty=2,lwd=2,col="blue")
legend(x="topleft",legend=c("农村居民消费水平","城镇居民消费水平"),lty=1:2,col=c(1,4),cex=0.8)

函数ts(data, start,…)用于创建时间序列对象,参数data为向量、矩阵或数据框; start设定时间序列的起始时间。
在这里插入图片描述

图显示,无论是农村居民还是城镇居民,消费水平随时间的推移均呈现逐年提高的趋势,但城镇居民的消费水平各年均高于农村居民,而且随时间的推移消费水平的差距有扩大的趋势。

洛伦茨曲线

在频数分布中,如果将各类别的频数逐级累加,即可得到累积频数分布表。根据累加频数分布表可以绘制累加频数分布曲线。
洛伦茨曲线(Lorenz curve)是一种特殊的累积频数分布曲线,它是20世纪初由美国统计学家洛伦茨(M. E. Lorentz)根据意大利经济学家帕累托(V. Pareto)提出的收入分配公式绘制的描述收入和财富分配不平等程度的曲线。

图中弯曲的线就是洛伦茨曲线
如果用横轴表示人口百分比,纵轴表示相应人口获得的收入百分比,通过洛伦兹曲线,可以直观地反映一个国家或地区收入分配平等或不平等的状况
如果一定累积百分比的人口获得相同累积百分比的收入,就是图中的对角线,即收入分配绝对平均线。
如果绝大多数人口占有很少的收入,而一小部分人口占有绝大部分的收入,则洛伦茨曲线就靠近下横轴和右纵轴形成弯曲的线。弯曲程度越大,表示收入分配越不公平。

在这里插入图片描述

为更准确的反映收入分配的不平等程度,20世纪初意大利经济学家基尼(C. Gini)根据洛伦茨曲线给出了衡量收入分配平等程度的指标,即基尼系数(Gini coefficient),用公式表示为:
在这里插入图片描述

计算绘制洛伦茨曲线所需的各百分比数值

load("C:/example/ch2/example2_10.RData")
library(DescTools)
Lc(example2_10$组中值,example2_10$人数)

在这里插入图片描述

绘制洛伦茨曲线

par(mai=c(0.7,0.7,0.4,0.1),cex=0.8)
plot(Lc(example2_10$组中值,example2_10$人数),xlab="人数比例",ylab="收入比例",col=4,panel.first=grid(10,10,col="gray70"))

在这里插入图片描述

在这里插入图片描述


练习

1、(数据: exercise2_5.RData)exercise2_5.RData数据是2005—2014年我国城镇居民和农村居民的居民消费价格指数(CPI)数据。
绘制时间序列图,观察城镇居民和农村居民消费价格指数的变化特征。

library(ggplot2)
ggplot(data, aes(x=year)) geom_line(aes(y=urban, color="城镇居民"), size=1)  geom_line(aes(y=rural, color="农村居民"), size=1) + abs(x="年份", y="居民消费价格指数(CPI)", color="居住类型") scale_color_manual(values=c("城镇居民"="red", "农村居民"="blue"))  theme_minimal()

在这里插入图片描述

2、(数据: exercise2_6.RData)假定某地区不同收入阶层的人口数和不同阶层人口的年收入额如数据 exercise2_6.RData所示。
绘制洛伦兹曲线分析收入分配的不平等程度。

load("C:/ch2/ch2/exercise/exercise2_6.RData")
library(DescTools)
Lc(exercise2_6$不同阶层人口数的收入额,exercise2_6$不同收入阶层的人口数)
par(mai=c(0.7,0.7,0.4,0.1),cex=0.8)
plot(Lc(exercise2_6$不同阶层人口数的收入额,exercise2_6$不同收入阶层的人口数),xlab="人数比例",ylab="收入比例",col=4,panel.first=grid(10,10,col="gray70"))

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/315094.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

flutter封装dio请求库,让我们做前端的同学可以轻松上手使用,仿照axios的使用封装

dio是一个非常强大的网络请求库&#xff0c;可以支持发送各种网络请求&#xff0c;就像axios一样灵活强大&#xff0c;但是官网没有做一个demo示例&#xff0c;所以前端同学使用起来还是有点费劲&#xff0c;所以就想在这里封装一下&#xff0c;方便前端同学使用。 官网地址&a…

探索检索增强生成(RAG)技术的无限可能:Vector+KG RAG、Self-RAG、多向量检索器多模态RAG集成

探索检索增强生成&#xff08;RAG&#xff09;技术的无限可能&#xff1a;VectorKG RAG、Self-RAG、多向量检索器多模态RAG集成 由于 RAG 的整体思路是首先将文本切分成不同的组块&#xff0c;然后存储到向量数据库中。在实际使用时&#xff0c;将计算用户的问题和文本块的相似…

【C语言刷题每日一题#牛客网BC107】矩阵转置

目录 问题描述 思路逐步分析 完整代码实现 结果测试 问题描述 思路逐步分析 首先&#xff0c;根据输入的描述&#xff0c;第一行输入的是两个整数n和m&#xff0c;分别表示一个矩阵&#xff08;二维数组&#xff09;的行和列&#xff0c;并且行和列不超过10 根据要求&…

AC修炼计划(AtCoder Beginner Contest 335)A-F

传送门&#xff1a; AtCoder Beginner Contest 335 (Sponsored by Mynavi) - AtCoder A&#xff0c;B&#xff0c;C&#xff0c;D还算比较基础&#xff0c;没有什么思路&#xff0c;纯暴力就可以过。 这里来总结一下E和F E - Non-Decreasing Colorful Path 最开始以为是树形…

用笨办法-刻意练习来提高自己的编程能力

尝试了很多学习方法&#xff0c;企图快速提高编程能力&#xff0c;但最终发现&#xff0c;唯有老老实实刻意练习1&#xff0c;在辛苦与时间积累下&#xff0c;逐渐提升能力&#xff0c;才是最有效的方式。 将自己的笨办法总结了一下&#xff0c;主要包含7个步骤&#xff1a; …

Mariadb和mysql数据库的区别和相同之处

目 录 一、maridb 和mysql在linux系统中广泛应用 二、MySQL数据库 三、MariaDB数据库 四、MariaDB和MySQL有哪些相同点 五、MariaDB和MySQL的不同点 一、mariadb 和mysql在linux系统中广泛应用 用linux&#xff08;包括centos和Ubuntu&#xff09;的都知道&a…

构建基于RHEL7(CentOS7)的OpenSSH9.5p1的RPM包和升级回退方案

本文适用&#xff1a;RHEL7系列&#xff0c;或同类系统(CentOS7等) 文档形成时期&#xff1a;2023年 因软件世界之复杂和个人能力之限&#xff0c;难免疏漏和错误&#xff0c;欢迎指正。 文章目录 环境准备安装依赖openssh-9.5p1-el7.spec内容构建RPM包下载安装前注意事项开启t…

python学习笔记9(程序的描述方式、程序的组织结构、顺序结构、选择结构1)

&#xff08;一&#xff09;程序的描述方式 自然语言、流程图、伪代码 &#xff08;二&#xff09;程序的组织结构 顺序、选择、循环 &#xff08;三&#xff09;顺序结构 &#xff08;四&#xff09;选择结构1 if 1、条件写法1 2、如果只有一个判断的写法 3、注意冒号和缩进…

14、MySQL高频面试题

1、内连接和外连接的区别 内连接和外连接都是数据库进行多表联查时使用的连接方式&#xff0c;区别在于二者获取的数据集不同 内连接指的是使用左表中的每一条数据分别去连接右表中的每一条数据&#xff0c;仅仅显示出匹配成功的那部分 外连接有分为左外连接和右外连接 左外…

rke2 Online Deploy Rancher v2.8.0 latest (helm 在线部署 rancher v2.8.0)

文章目录 1. 简介2. 预备条件3. 安装 helm4. 安装 cert-manager4.1 yaml 安装4.2 helm 安装 5. 安装 rancher6. 验证7. 界面预览 1. 简介 Rancher 是一个 Kubernetes 管理工具&#xff0c;让你能在任何地方和任何提供商上部署和运行集群。 Rancher 可以创建来自 Kubernetes 托…

RPA财务机器人在厦门市海沧医院财务管理流程优化汇总的应用

目前国内外研究人员对于RPA机器人在财务管理流程优化领域中的应用研究层出不穷&#xff0c;但现有研究成果主要集中在财务业务单一领域&#xff0c;缺乏财务管理整体流程一体化管控的研究。RPA机器人的功能绝非单一的财务业务处理&#xff0c;无论从自身技术发展&#xff0c;或…

【野火i.MX6NULL开发板】挂载 NFS 网络文件系统

0、前言 参考资料&#xff1a; &#xff08;误人子弟&#xff09;《野火 Linux 基础与应用开发实战指南基于 i.MX6ULL 系列》PDF 第22章 参考视频&#xff1a;&#xff08;成功&#xff09; https://www.bilibili.com/video/BV1JK4y1t7io?p26&vd_sourcefb8dcae0aee3f1aab…

Veeam Backup12安装备份恢复ESXI7.0 U3虚拟机

介绍 只需单个平台即可保护并管理所有工作负载、应用及数据&#xff1a;云端、虚拟、物理、SaaS、Kubernetes、VMware、Hyper-V、Windows、Linux、UNIX、NAS、AWS、Azure、企业应用等。 个人主要用于备份ESXi上的虚拟机&#xff0c;可以实现单次完整备份&#xff0c;和定时的…

SpringBoot请求参数加密、响应参数解密

SpringBoot请求参数加密、响应参数解密 1.说明 在项目开发工程中&#xff0c;有的项目可能对参数安全要求比较高&#xff0c;在整个http数据传输的过程中都需要对请求参数、响应参数进行加密&#xff0c;也就是说整个请求响应的过程都是加密处理的&#xff0c;不在浏览器上暴…

Windows下Redis5+可视化软件下载、安装和配置教程-2024年1月8日

Windows下Redis5下载、安装和配置教程-2024年1月8日 一、下载二、安装三、配置环境四、配置可视化客户端 一、下载 redis是现在是没有对win系统版进行维护的&#xff0c;这个是大神完成的&#xff0c;目前是到5版本&#xff0c;选择Redis-x64-5.0.14.1.zip点击下载 下载地址&…

Spring MVC 异常处理器

异常处理器 如果不加以异常处理&#xff0c;错误信息肯定会抛在浏览器页面上&#xff0c;这样很不友好&#xff0c;所以必须进行异常处理。 异常处理思路 系统的dao、service、controller出现都通过throws Exception向上抛出&#xff0c;最后由springmvc前端控制器交由异常处…

爬虫之使用代理

爬虫—使用代理 1. 为什么使用代理 1.1 让服务器以为不是同一个客户端在请求 1.2 防止我们的真实地址被泄漏&#xff0c;防止被追究 2. 理解使用代理的过程 3. 理解正向代理和反向代理的区别 通过上图可以看出&#xff1a; 正向代理&#xff1a;对于浏览器知道服务器的真实…

MySQL运维实战(3.1) MySQL官方客户端使用介绍

作者&#xff1a;俊达 引言 MySQL是MySQL安装包默认的客户端&#xff0c;该客户端程序通常位于二进制安装包的bin目录中&#xff0c;或者通过rpm安装包安装mysql-community-client&#xff0c;是数据库管理系统的重要组成部分。MySQL客户端不仅仅是一个简单的软件工具&#x…

RK3568驱动指南|第十一篇 pinctrl 子系统-第123章dt_node_to_map函数分析

瑞芯微RK3568芯片是一款定位中高端的通用型SOC&#xff0c;采用22nm制程工艺&#xff0c;搭载一颗四核Cortex-A55处理器和Mali G52 2EE 图形处理器。RK3568 支持4K 解码和 1080P 编码&#xff0c;支持SATA/PCIE/USB3.0 外围接口。RK3568内置独立NPU&#xff0c;可用于轻量级人工…

【python入门】day26:统计字符串中出现指定字符的次数

案例 实际上if name“main”:就相当于是 Python 模拟的程序入口 。由于模块之间相互引用&#xff0c;不同模块可能都有这样的定义&#xff0c;而入口程序只能有一个&#xff0c;选中哪个入口程序取决于 ** ** name** **的值。 代码 #-*- coding:utf-8 -*- #开发时间&#xff…