YOLOV8

YOLOv8 是 ultralytics (超溶体)公司在 2023 年 1月 10 号开源的 YOLOv5 的下一个重大更新版本,目前支持图像分类、物体检测和实例分割任务,在还没有开源时就收到了用户的广泛关注。

总结:

1. 是YOLOV5的继承者

2. 支持多任务

目录

1. YOLOv8 概述

2. 模型结构设计

3. Loss 计算

4. 训练数据增强

5. 训练策略

6. 模型推理过程

7. 特征图可视化

总结


官方开源地址icon-default.png?t=N7T8https://github.com/ultralytics/ultralytics%E2%80%8B

按照官方描述,YOLOv8 是一个 SOTA 模型,它建立在以前 YOLO 版本的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。

不过 ultralytics 并没有直接将开源库命名为 YOLOv8,而是直接使用 ultralytics 这个词,原因是 ultralytics 将这个库定位为算法框架,而非某一个特定算法,一个主要特点是可扩展性。其希望这个库不仅仅能够用于 YOLO 系列模型,而是能够支持非 YOLO 模型以及分类分割姿态估计等各类任务。(这不就是妥妥的:detectron2 吗,代码加载都放在 __init__.py中,都面相对象了,变成框架了,代码好不直观。使用是更傻瓜了,但是代码更难分离,更难懂了,这是深度封装的的诟病)
总而言之,ultralytics 开源库的两个主要优点是:

  • 融合众多当前 SOTA 技术于一体
  • 未来将支持其他 YOLO 系列以及 YOLO 之外的更多算法

(评注:框架太多了,可以忽略学习)

下表为官方在 COCO Val 2017 数据集上测试的 mAP、参数量和 FLOPs 结果。可以看出 YOLOv8 相比 YOLOv5 精度提升非常多,但是 N/S/M 模型相应的参数量和 FLOPs 都增加了不少,从上图也可以看出相比 YOLOV5 大部分模型推理速度变了。

模型YOLOv5params(M)FLOPs@640 (B)YOLOv8params(M)FLOPs@640 (B)
n28.0(300e)1.94.537.3 (500e)3.28.7
s37.4 (300e)7.216.544.9 (500e)11.228.6
m45.4 (300e)21.249.050.2 (500e)25.978.9
l49.0 (300e)46.5109.152.9 (500e)43.7165.2
x50.7 (300e)86.7205.753.9 (500e)68.2257.8


额外提一句,现在各个 YOLO 系列改进算法都在 COCO 上面有明显性能提升,但是在自定义数据集上面的泛化性还没有得到广泛验证,至今依然听到不少关于 YOLOv5 泛化性能较优异的说法

 

1. YOLOv8 概述

具体到 YOLOv8 算法,其核心特性和改动可以归结为如下:

  1. 提供了一个全新的 SOTA 模型,包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于 YOLACT 的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
  2. 骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是无脑一套参数应用所有模型,大幅提升了模型性能。不过这个 C2f 模块中存在 Split 等操作对特定硬件部署没有之前那么友好了
  3. Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从 Anchor-Based 换成了 Anchor-Free
  4. Loss 计算方面采用了 TaskAlignedAssigner 正样本分配策略,并引入了 Distribution Focal Loss
  5. 训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

从上面可以看出,YOLOv8 主要参考了最近提出的诸如 YOLOX、YOLOv6、YOLOv7 和 PPYOLOE 等算法的相关设计,本身的创新点不多,偏向工程实践,主推的还是 ultralytics 这个框架本身。

下面将按照模型结构设计、Loss 计算、训练数据增强、训练策略和模型推理过程共 5 个部分详细介绍 YOLOv8 目标检测的各种改进,实例分割部分暂时不进行描述。

2. 模型结构设计

以上为基于 YOLOv8 官方代码所绘制的模型结构图。如果你喜欢这种模型结构图风格,可以查看 MMYOLO 里面对应算法 README 中的模型结构图,目前已经支持了 YOLOv5、YOLOv6、YOLOX、RTMDet 和 YOLOv8。

MMYOLO 中重构的 YOLOv8 模型对应结构图如下所示:
详细地址为: https://github.com/open-mmlab/mmyolo/blob/dev/configs/yolov8/README.md


在暂时不考虑 Head 情况下,对比 YOLOv5 和 YOLOv8 的 yaml 配置文件可以发现改动较小。

左侧为 YOLOv5-s,右侧为 YOLOv8-s

骨干网络和 Neck 的具体变化为:

  • 第一个卷积层的 kernel 从 6x6 变成了 3x3
  • 所有的 C3 模块换成 C2f,结构如下所示,可以发现多了更多的跳层连接和额外的 Split 操作

  • 去掉了 Neck 模块中的 2 个卷积连接层
  • Backbone 中 C2f 的block 数从 3-6-9-3 改成了 3-6-6-3
  • 查看 N/S/M/L/X 等不同大小模型,可以发现 N/S 和 L/X 两组模型只是改了缩放系数,但是 S/M/L 等骨干网络的通道数设置不一样,没有遵循同一套缩放系数。如此设计的原因应该是同一套缩放系数下的通道设置不是最优设计,YOLOv7 网络设计时也没有遵循一套缩放系数作用于所有模型

Head 部分变化最大,从原先的耦合头变成了解耦头,并且从 YOLOv5 的 Anchor-Based 变成了 Anchor-Free。其结构如下所示:


可以看出,不再有之前的 objectness 分支,只有解耦的分类和回归分支,并且其回归分支使用了 Distribution Focal Loss 中提出的积分形式表示法, DFL 的描述见知乎推文:大白话 Generalized Focal Loss - 知乎

3. Loss 计算

Loss 计算过程包括 2 个部分: 正负样本分配策略和 Loss 计算。

现代目标检测器大部分都会在正负样本分配策略上面做文章,典型的如 YOLOX 的 simOTA、TOOD 的 TaskAlignedAssigner 和 RTMDet 的 DynamicSoftLabelAssigner,这类 Assigner 大都是动态分配策略,而 YOLOv5 采用的依然是静态分配策略。考虑到动态分配策略的优异性,YOLOv8 算法中则直接引用了 TOOD 的 TaskAlignedAssigner。

TaskAlignedAssigner 的匹配策略简单总结为: 根据分类与回归的分数加权的分数选择正样本

s 是标注类别对应的预测分值,u 是预测框和 gt 框的 iou,两者相乘就可以衡量对齐程度。

  1. 对于每一个 GT,对所有的预测框基于 GT 类别对应分类分数,预测框与 GT 的 IoU 的加权得到一个关联分类以及回归的对齐分数 alignment_metrics
  2. 对于每一个 GT,直接基于 alignment_metrics 对齐分数选取 topK 大的作为正样本


Loss 计算包括 2 个分支: 分类和回归分支,没有了之前的 objectness 分支。

  • 分类分支依然采用 BCE Loss
  • 回归分支需要和 Distribution Focal Loss 中提出的积分形式表示法绑定,因此使用了 Distribution Focal Loss, 同时还使用了 CIoU Loss

3 个 Loss 采用一定权重比例加权即可。

4. 训练数据增强

数据增强方面和 YOLOv5 差距不大,只不过引入了 YOLOX 中提出的最后 10 个 epoch 关闭 Mosaic 的操作。假设训练 epoch 是 500,其示意图如下所示:


考虑到不同模型应该采用的数据增强强度不一样,因此对于不同大小模型,有部分超参会进行修改,典型的如大模型会开启 MixUp 和 CopyPaste。数据增强后典型效果如下所示:


上述效果可以运行https://github.com/open-mmlab/mmyolo/blob/dev/tools/analysis_tools/browse_dataset.py 脚本得到

由于每个 pipeline 都是比较常规的操作,本文不再赘述。如果想了解每个 pipeline 的细节,可以查看 MMYOLO 中 YOLOv5 的算法解析文档:https://mmyolo.readthedocs.io/zh_CN/latest/algorithm_descriptions/yolov5_description.html#id2


5. 训练策略

YOLOv8 的训练策略和 YOLOv5 没有啥区别,最大区别就是模型的训练总 epoch 数从 300 提升到了 500,这也导致训练时间急剧增加。以 YOLOv8-S 为例,其训练策略汇总如下:

配置YOLOv8-s P5 参数
optimizerSGD
base learning rate0.01
Base weight decay0.0005
optimizer momentum0.937
batch size128
learning rate schedulelinear
training epochs500
warmup iterationsmax(1000,3 * iters_per_epochs)
input size640x640
EMA decay0.9999

6. 模型推理过程

YOLOv8 的推理过程和 YOLOv5 几乎一样,唯一差别在于前面需要对 Distribution Focal Loss 中的积分表示 bbox 形式进行解码,变成常规的 4 维度 bbox,后续计算过程就和 YOLOv5 一样了。

以 COCO 80 类为例,假设输入图片大小为 640x640,MMYOLO 中实现的推理过程示意图如下所示:

其推理和后处理过程为:

(1) bbox 积分形式转换为 4d bbox 格式
对 Head 输出的 bbox 分支进行转换,利用 Softmax 和 Conv 计算将积分形式转换为 4 维 bbox 格式
(2) 维度变换
YOLOv8 输出特征图尺度为 80x80、40x40 和 20x20 的三个特征图。Head 部分输出分类和回归共 6 个尺度的特征图。
将 3 个不同尺度的类别预测分支、bbox 预测分支进行拼接,并进行维度变换。为了后续方便处理,会将原先的通道维度置换到最后,类别预测分支 和 bbox 预测分支 shape 分别为 (b, 80x80+40x40+20x20, 80)=(b,8400,80),(b,8400,4)。
(3) 解码还原到原图尺度
分类预测分支进行 Sigmoid 计算,而 bbox 预测分支需要进行解码,还原为真实的原图解码后 xyxy 格式。
(4) 阈值过滤
遍历 batch 中的每张图,采用 score_thr 进行阈值过滤。在这过程中还需要考虑 multi_label 和 nms_pre,确保过滤后的检测框数目不会多于 nms_pre。
(5) 还原到原图尺度和 nms
基于前处理过程,将剩下的检测框还原到网络输出前的原图尺度,然后进行 nms 即可。最终输出的检测框不能多于 max_per_img。

有一个特别注意的点:YOLOv5 中采用的 Batch shape 推理策略,在 YOLOv8 推理中暂时没有开启,不清楚后面是否会开启,在 MMYOLO 中快速测试了下,如果开启 Batch shape 会涨大概 0.1~0.2。

7. 特征图可视化

MMYOLO 中提供了一套完善的特征图可视化工具,可以帮助用户可视化特征的分布情况。

以 YOLOv8-s 模型为例,第一步需要下载官方权重,然后将该权重通过https://github.com/open-mmlab/mmyolo/blob/dev/tools/model_converters/yolov8_to_mmyolo.py 脚本将去转换到 MMYOLO 中,注意必须要将脚本置于官方仓库下才能正确运行,假设得到的权重名字为 mmyolov8s.pth

假设想可视化 backbone 输出的 3 个特征图效果,则只需要

cd mmyolo # dev 分支
python demo/featmap_vis_demo.py demo/demo.jpg configs/yolov8/yolov8_s_syncbn_fast_8xb16-500e_coco.py mmyolov8s.pth --channel-reductio squeeze_mean


需要特别注意,为了确保特征图和图片叠加显示能对齐效果,需要先将原先的 test_pipeline 替换为如下:

test_pipeline = [
    dict(
        type='LoadImageFromFile',
        file_client_args=_base_.file_client_args),
    dict(type='mmdet.Resize', scale=img_scale, keep_ratio=False), # 这里将 LetterResize 修改成 mmdet.Resize
    dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),
    dict(
        type='mmdet.PackDetInputs',
        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                   'scale_factor'))
]


从上图可以看出不同输出特征图层主要负责预测不同尺度的物体

我们也可以可视化 Neck 层的 3 个输出层特征图:

cd mmyolo # dev 分支
python demo/featmap_vis_demo.py demo/demo.jpg configs/yolov8/yolov8_s_syncbn_fast_8xb16-500e_coco.py mmyolov8s.pth --channel-reductio squeeze_mean --target-layers neck

从上图可以发现物体处的特征更加聚焦。

总结


本文详细分析和总结了最新的 YOLOv8 算法,从整体设计到模型结构、Loss 计算、训练数据增强、训练策略和推理过程进行了详细的说明,并提供了大量的示意图供大家方便理解。

简单来说 YOLOv8 是一个包括了图像分类、Anchor-Free 物体检测和实例分割的高效算法,检测部分设计参考了目前大量优异的最新的 YOLO 改进算法,实现了新的 SOTA。不仅如此还推出了一个全新的框架。不过这个框架还处于早期阶段,还需要不断完善。

由于时间仓促且官方代码在不断完善中,如果有不对的地方,欢迎批评和指正。MMYOLO 会尽快地跟进并复现该算法,敬请期待!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/314816.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

使用CloudCompare对obj网格模型转换为pcd/ply点云模型

1.打开CloudCompare,点击文件夹图标,首先先把文件类型选择为.obj,然后再去找预处理的obj网格模型,点击打开。 2.测试打开的obj网格模型如下图: 3.选中obj文件,点击网格上样本点的图标,输入预生成…

VNC:虚拟网络计算技术及在VMware中开启VNC连接教程

什么是VNC? VNC (Virtual Network Computing) 是一种广泛应用的远程桌面共享系统,它允许用户通过网络实时查看并控制另一台计算机的桌面环境。无论操作系统如何,只要两端设备均安装了兼容的VNC客户端和服务端软件,即可实现跨平台…

RT-Thread入门笔记6-空闲线程及两个常用的钩子函数

空闲线程 空闲线程是一个比较特殊的系统线程,它具备最低的优先级。当系统中无其他就绪线程可运行时,调度器将调度到空闲线程。 空闲线程还负责一些系统资源回收以及将一些处于关闭态的线程从线程调度列表中移除的动作 空闲线程在形式上是一个无线循环结…

Vue3-43-组件- 组件状态保持 KeepAlive 的简单使用

作用说明 一个应用场景 &#xff1a; 当我们在进行路由跳转的时候&#xff0c;会用到 <router-view> 来作为 组件渲染的出口&#xff0c; 此时&#xff0c;组件的状态是不会被保持的。 比如 &#xff1a; 当前在【组件A】中有一个响应式状态 num 的值通过 自加的方式 从初…

JS-DOM树和DOM对象

作用和分类 作用&#xff1a;就是使用JS去操作html和浏览器 分类&#xff1a;DOM&#xff08;文档对象模型&#xff09;、BOM&#xff08;浏览器对象模型&#xff09; 什么是DOM DOM&#xff08;Document Object Model--文档对象模型&#xff09;是用来呈现以及与任意HTML或…

横版动作闯关游戏:幽灵之歌 GHOST SONG 中文版

在洛里安荒凉的卫星上&#xff0c;一件长期休眠的死亡服从沉睡中醒来。踏上发现自我、古老谜团和宇宙骇物的氛围2D冒险之旅。探索蜿蜒的洞穴&#xff0c;获得新的能力来揭开这个外星世界埋藏已久的秘密。 游戏特点 发现地下之物 探索这个广阔而美丽如画&#xff0c;充满密室和诡…

【算法笔记】状态压缩dp(noip)

在acwing学习算法的一点思考和总结 状态压缩dp可以用来解决两种问题&#xff1a;一种是棋盘式的&#xff0c;也就是表示一行有2^N种摆法&#xff0c;另一种是表示一类集合 状压——棋盘式 思路&#xff1a;可以类比一下蒙德里安的梦想的解题过程&#xff0c;每一行的状态都只会…

数据库悲观锁 select for update的详解

一 作用 1.1 结论 在mysql中&#xff0c;select ... for update 仅适用于InnoDB&#xff0c;且必须在事务块中才能生效。Innodb引擎默认是行锁。 Select .... from where .... for update 如果在where的查询条件字段使用了【主键|索引】&#xff0c;则此命令上行锁。否…

“Frontiers”系列多本期刊分区下跌,1本SCI被踢,2本SCI升为Top,还可投吗?

近期&#xff0c;2023年中科院分区正式发布&#xff0c;不少学者都很关心期刊变动情况。此次分区更新中&#xff0c;Frontiers出版社旗下的医学期刊表现让人大跌眼镜。 据汇总来看&#xff0c;32本大类医学SCI期刊中&#xff0c;Frontiers of Hormone Research直接从原来的医学…

C语言操作符详解与进制

目录 一&#xff1a;操作符的分类 二&#xff1a;二进制和进制转换 2.1 2进制转10进制 2.1.1 10进制转2进制数字 2.2 2进制转8进制和16进制 2.2.1 2进制转8进制 2.2.2 2进制转16进制 三&#xff1a; 原码、反码、补码 四&#xff1a;移位操作符 4.1左移操作符 4.2 右…

AOT-GAN-for-Inpainting项目解读|使用AOT-GAN进行图像修复

项目地址&#xff1a; https://github.com/researchmm/AOT-GAN-for-Inpainting 基于pytorch实现 论文地址&#xff1a; https://arxiv.org/abs/2104.01431 开源时间&#xff1a; 2021年 项目简介&#xff1a; AOT-GAN-for-Inpainting是一个开源的图像修复项目&#xff0c;其对 …

c++学习笔记-STL案例-机房预约系统3-登录模块

前言 衔接上一篇“c学习笔记-STL案例-机房预约系统2-创建身份类”&#xff0c;本文主要设计登录模块&#xff0c;建立globalFile.h头文件定义使用的文件名字符串&#xff0c;登录函数封装&#xff0c;并对学生登录、老师登录、管理员登录进行了具体实现。 目录 6 登录模块 6…

外卖骑手与行人之间的非零和博弈

一、背景 自2013年成立以来&#xff0c;美团外卖一直保持着高速增长&#xff0c;通过提供便捷、高效的外卖服务&#xff0c;满足了大量消费者的需求。美团外卖的服务不仅限于基础的送餐服务&#xff0c;还涵盖了多种生活服务&#xff0c;如超市便利、药品配送等&#xff0c;满…

记录汇川:H5U与Fctory IO测试10

主程序&#xff1a; 子程序&#xff1a; IO映射 子程序&#xff1a; 自动程序 Fctory IO配置&#xff1a; HMI配置&#xff1a; 实际动作如下&#xff1a; Fctory IO测试10

档案数字化怎样快速整理资料

对于机构和组织来说&#xff0c;档案数字化是一个重要的信息管理和保护措施。要快速整理资料进行档案数字化&#xff0c;可以遵循以下步骤&#xff1a; 1. 准备工具和设备&#xff1a;确保有一台计算机、扫描仪和相关软件。 2. 分类和组织资料&#xff1a;先将资料分类&#xf…

一文解析Web缓存代理

Web缓存代理在现代网络架构中起着非常重要的作用&#xff0c;它可以减少网络传输延迟&#xff0c;提高网站的性能和用户体验。本文将深入解析Web缓存代理的原理、工作方式以及优势&#xff0c;帮助读者更好地理解和应用这一技术。 在Web应用中&#xff0c;数据的快速传输是至关…

[足式机器人]Part2 Dr. CAN学习笔记-Advanced控制理论 Ch04-5稳定性stability-李雅普诺夫Lyapunov

本文仅供学习使用 本文参考&#xff1a; B站&#xff1a;DR_CAN Dr. CAN学习笔记-Advanced控制理论 Ch04-5稳定性stability-李雅普诺夫Lyapunov Stability in the sense of Lyapunov Assympototic Stability

关于白盒测试,这些技巧你得游刃有余~

对于很多刚开始学习软件测试的小伙伴来说&#xff0c;如果能尽早将黑盒、白盒测试弄明白&#xff0c;掌握两种测试的结论和基本原理&#xff0c;将对自己后期的学习有较好的帮助。今天&#xff0c;我们就来聊聊黑盒、白盒测试的相关话题。 1、黑盒测试的方法和小结 最常见黑盒…

Elasticsearch倒排索引详解

倒排索引&#xff1a; 组成 term index(词项索引 &#xff0c;存放前后缀指针) Term Dictionary&#xff08;词项字典&#xff0c;所有词项经过文档与处理后按照字典顺序组成的一个字典&#xff08;相关度&#xff09;&#xff09; Posting List&#xff08;倒排表&#xf…

Asp .Net Core 系列: 集成 Consul 实现 服务注册与健康检查

文章目录 什么是 Consul?安装和运行 ConsulAsp .Net Core 如何集成 Consul 实现服务注册和健康检查Consul.AspNetCore 中的 AddConsul 和 AddConsulServiceRegistration 方法 究竟做了什么&#xff1f;AddConsul 方法AddConsulServiceRegistration 方法 配置 Consul 检查服务封…