2. Presto应用

该笔记来源于网络,仅用于搜索学习,不保证所有内容正确。

文章目录

      • 1、Presto安装使用
      • 2、事件分析
      • 3、漏斗分析
      • 4、漏斗分析UDAF开发
        • 开发UDF插件
        • 开发UDAF插件
      • 5、漏斗测试

1、Presto安装使用

参考官方文档:https://prestodb.io/docs/current/

Presto是一个高效的查询分析引擎,支持多种数据源,例如(Hive、MySQL、MD、Kafka等),内部查询是基于内存操作的,相比较Spark效率更高,而且更大的特点在于可以自定义内存空间,设置内存使用大小。

安装部署

# 创建目录
mkdir -p /opt1/soft/presto
# 下载presto-server
wget -P /opt1/soft/presto http://doc.yihongyeyan.com/qf/project/soft/presto/presto-server-0.236.tar.gz
# 解压
tar -zxvf presto-server-0.236.tar.gz
# 创建软连
ln -s  /opt1/soft/presto/presto-server-0.236 /opt1/soft/presto/presto-server
# 安装目录下创建etc目录
cd /opt1/soft/presto/presto-server/ && mkdir etc
# 创建节点数据目录
mkdir -p /data1/presto/data
# 接下来创建配置文件
cd /opt/soft/presto/presto-server/etc/
# config.properties  persto server的配置
cat << EOF > config.properties 
coordinator=true
node-scheduler.include-coordinator=true
http-server.http.port=8080
# 单个查询在整个集群上够使用的最大用户内存
query.max-memory=3GB
# 单个查询在每个节点上可以使用的最大用户内存
query.max-memory-per-node=1GB
# 单个查询在每个节点上可以使用的最大用户内存+系统内存(user memory: hash join,agg等,system memory:input/output/exchange buffers等)
query.max-total-memory-per-node=2GB
discovery-server.enabled=true
discovery.uri=http://0.0.0.0:8080
EOF

# node.properties 节点配置
cat << EOF > node.properties 
node.environment=production
node.id=node01
node.data-dir=/data1/presto/data
EOF

#jvm.config 配置,注意-DHADOOP_USER_NAME配置,替换为你需要访问hdfs的用户
cat << EOF > jvm.config 
-server
-Xmx3G
-XX:+UseG1GC
-XX:G1HeapRegionSize=32M
-XX:+UseGCOverheadLimit
-XX:+ExplicitGCInvokesConcurrent
-XX:+HeapDumpOnOutOfMemoryError
-XX:+ExitOnOutOfMemoryError
-DHADOOP_USER_NAME=root
EOF

#log.properties
#default level is INFO. `ERROR`,`WARN`,`DEBUG`
cat << EOF > log.properties
com.facebook.presto=INFO
EOF

# catalog配置,就是各种数据源的配置,我们使用hive,注意替换为你自己的thrift地址
mkdir /opt1/soft/presto/presto-server/etc/catalog
cat <<EOF > catalog/hive.properties
connector.name=hive-hadoop2
hive.metastore.uri=thrift://192.168.10.99:9083
hive.parquet.use-column-names=true
hive.allow-rename-column=true
hive.allow-rename-table=true
hive.allow-drop-table=true
EOF

# 添加hudi支持
wget -P /opt1/soft/presto/presto-server/plugin/hive-hadoop2 http://doc.yihongyeyan.com/qf/project/soft/hudi/hudi-presto-bundle-0.5.2-incubating.jar

# 客户端安装
wget -P /opt1/soft/presto/ http://doc.yihongyeyan.com/qf/project/soft/presto/presto-cli-0.236-executable.jar
cd /opt1/soft/presto/
mv presto-cli-0.236-executable.jar presto
chmod u+x presto
ln -s /opt1/soft/presto/presto /usr/bin/presto  
# 至此presto 安装完毕

在这里插入图片描述

测试

# 启动persto-server, 注意下方命令是在后台启动,日志文件在node.properties中配置的 /data2/presto/data/var/log/ 目录下
/opt1/soft/presto/presto-server/bin/launcher start
# presot 连接hive metastore
presto --server 192.168.10.99:8080 --catalog hive --schema ods_news1
# 执行查询你会看到我们hive中的表
show tables;

进入客户端后,查询数据很多,需要用end键查看下拉,如果想退出按q键退出查看

2、事件分析

在这里我们先确定实施方案,也就是我们接下来开发的各种模型要怎么使用,给你大家提供了三种方案,第一种就是使用可视化工具superset,第二种就是使用hue、第三种使用自研Web平台,我们选择的是第三种方式,这种方式需要编写JDBC连接操作Presto,然后根据每个模型查询出来的不同结果集,提供不同的接口,客户端可以用过访问HTTP请求来调用接口拿到每个不同模型的不同数据。

-- 2. 分版本各APP页面访问次数(PV)的TOP-3, [当日准实时数据,当下时间延迟5分钟]

with t1 as(
    select
    logday,
    app_version,
    element_page,
    count(1) as pv
    from ods_news1.event
    where logday='20201227' and app_version!=''
    group by 1,2,3
),
t2 as(
    select 
    logday,
    app_version,
    element_page,
    pv,
    row_number() over(partition by app_version order by pv desc) as rank
    from t1
)
select * from t2 where t2.rank<=3 order by app_version desc;

/*
 类似结果如下:
  logday  | app_version | element_page | pv | rank
----------+-------------+--------------+----+------
 20200619 | 2.3         | 我的         | 48 |    1
 20200619 | 2.3         | 活动页       | 40 |    2
 20200619 | 2.3         | 新闻列表页   | 39 |    3
 20200619 | 2.2         | 搜索页       | 40 |    1
 20200619 | 2.2         | 新闻列表页   | 38 |    2
 20200619 | 2.2         | 活动页       | 37 |    3
 20200619 | 2.1         | 首页         | 41 |    1
 20200619 | 2.1         | 活动页       | 37 |    2
 20200619 | 2.1         | 注册登录页   | 35 |    3
*/
-- 3. 天,小时,分钟 级别的APP页面点击的UV数,并保证每一列降序输出 [注意使用上卷函数,当日准实时数据,当下时间延迟5分钟]
--上卷(汇总数据)
上卷就是乘坐电梯上升观测人的过程。数据的汇总聚合,细粒度到粗粒度的过程,会无视某些维度
按城市汇总的人口数据上卷,观察按国家人口的数据。就是由细粒度到粗粒度观测数据的过程,应该还会记录相应变化。

--下钻(明细数据)
上卷的反向操作,数据明细,粗粒度到细粒度的过程,会细化某些维度
可以按照城市汇总的人口数据下钻,观察按城镇人口汇总的数据。由粗粒度变为细粒度。

--例
select * from table group by A;
select * from table group by A,B;
select * from table group by A,B,C;
自上而下粒度变细,为下钻;
自下而上粒度变粗,为上卷

with t1 as(
select
format_datetime(from_unixtime(ctime/1000),'yyyy-MM-dd') as log_day,
format_datetime(from_unixtime(ctime/1000),'yyyy-MM-dd HH') as log_hour,
format_datetime(from_unixtime(ctime/1000),'yyyy-MM-dd HH:mm') as log_minute,
distinct_id
from ods_news1.event
where logday='20201227' and event='AppClick'
)
select 
log_day,log_hour,log_minute,
count(distinct distinct_id) uv,
grouping(log_day,log_hour,log_minute) group_id
from t1
group by
rollup(log_day,log_hour,log_minute)
order by group_id desc,log_day desc ,log_hour desc ,log_minute desc
/*
	类似结果如下:
  log_day   |   log_hour    |    log_minute    |  uv  | group_id
------------+---------------+------------------+------+----------
 NULL       | NULL          | NULL             | 2341 |        7
 2020-06-19 | NULL          | NULL             | 2341 |        3
 2020-06-19 | 2020-06-19 18 | NULL             |  584 |        1
 2020-06-19 | 2020-06-19 17 | NULL             |  585 |        1
 2020-06-19 | 2020-06-19 16 | NULL             |  562 |        1
 2020-06-19 | 2020-06-19 15 | NULL             |  571 |        1
 2020-06-19 | 2020-06-19 14 | NULL             |  298 |        1
 2020-06-19 | 2020-06-19 18 | 2020-06-19 18:59 |    7 |        0
 2020-06-19 | 2020-06-19 18 | 2020-06-19 18:58 |   13 |        0
 2020-06-19 | 2020-06-19 18 | 2020-06-19 18:57 |   11 |        0
 2020-06-19 | 2020-06-19 18 | 2020-06-19 18:56 |    8 |        0
 2020-06-19 | 2020-06-19 18 | 2020-06-19 18:55 |   14 |        0
 2020-06-19 | 2020-06-19 18 | 2020-06-19 18:54 |   12 |        0
 2020-06-19 | 2020-06-19 18 | 2020-06-19 18:53 |   10 |        0
*/

3、漏斗分析

sql实现

# 我们漏斗分析中定义的需求如下
注册-> 点击新闻-> 进入详情页-> 发布评论  
# 转换成事件
SignUp -> AppClick[element_page='新闻列表页'] -> AppClick[element_page='内容详情页']->NewsAction[action_type='评论']

# 接下来我们用SQL实现这个需求
# 我们来查询 20201227到20201230 事件范围内,并且窗口时间是3天的漏斗
注意:我们这里数据就三天,所以窗口期也就是不用判断,但是我们以后可能会拿到N天数据,所以要加窗口期判断
-- 分析sql,首先我们可以先把每一个事件的数据按照条件查询出来,然后在将每一个事件中的时间拿到,进行关联查询,通过时间进行判断该事件是否在窗口期以内,并且还要和上一个事件判断,一定要大于它
-- 拿到三天内每一个事件数据
with t1 as(
    select
    distinct_id,
    ctime,
    event
    from  ods_news1.event
    where event='SignUp'
    and format_datetime(from_unixtime(ctime/1000),'yyyyMMdd') >='20200923'
    and format_datetime(from_unixtime(ctime/1000),'yyyyMMdd') <='20200925'
),
t2 as(
    select
    distinct_id,
    ctime,
    event
    from  ods_news1.event
    where event='AppClick' and element_page='新闻列表页'
    and format_datetime(from_unixtime(ctime/1000),'yyyyMMdd') >='20200923'
    and format_datetime(from_unixtime(ctime/1000),'yyyyMMdd') <='20200925'
),
t3 as(
    select
    distinct_id,
    ctime,
    event
    from  ods_news1.event
    where event='NewsAction' and element_page='评论'
    and format_datetime(from_unixtime(ctime/1000),'yyyyMMdd') >='20200923'
    and format_datetime(from_unixtime(ctime/1000),'yyyyMMdd') <='20200925'
),
t4 as(
    select
    distinct_id,
    ctime,
    event
    from  ods_news1.event
    where event='SignIn'
    and format_datetime(from_unixtime(ctime/1000),'yyyyMMdd') >='20200923'
    and format_datetime(from_unixtime(ctime/1000),'yyyyMMdd') <='20200925'
)
select
count(distinct t1.distinct_id) step1,
count(t2.event) step2,
count(t3.event) step3,
count(t4.event) step4
from t1 
left join t2 
on t1.distinct_id=t2.distinct_id 
and t1.ctime<t2.ctime and t2.ctime-t1.ctime<86400*3*1000
left join t3 
on t2.distinct_id=t3.distinct_id
and t2.ctime<t3.ctime and t3.ctime-t1.ctime<86400*3*1000
left join t4  
on t3.distinct_id=t4.distinct_id
and t3.ctime<t4.ctime and t4.ctime-t1.ctime<86400*3*1000
# 执行上述查询可以看到如下类似结果
 step1 | step2 | step3 | step4
-------+-------+-------+-------
  3154 |    79 |     2 |     1
# 代表着我们的漏斗的每一步的人数

4、漏斗分析UDAF开发

分析:UDAF开发我们分为两步处理,第一步处理数据,求出用户深度即可,第二步根据每一个用户的深度将其转换成数组,集合每一个数组中对应下标值,然后求sum。

Presto使用操作:

需要掌握内容:

1、开辟内存空间大小

2、合理设置存入数据大小,保证别越界,超出内存

3、内存地址结合使用

开发UDF插件

开发完成代码后,然后将插件要部署到Presto上面,前提先打Jar,然后上传到Presto,最后重启,使用函数

在这里插入图片描述

@ScalarFunction("my_upper") // 固定参数,这里面表示函数名的意思,也就我们在使用Presto的时候用的函数名
@Description("我的大小写转换函数") // 函数的注释
@SqlType(StandardTypes.VARCHAR) // 表示数据类型
开发UDAF插件
@AggregationFunction("sumDouble") // 函数名
@Description("this is a sum double") // 注释
@InputFunction  输入的方法注释
@CombineFunction  合并方法注释
@OutputFunction()  输出方法注释

同理,打包上传即可,然后重启Presto就可以使用。

5、漏斗测试

用户深度

select funnel(ctime, 86400*1000*3, event, 'SignUp,AppClick,AppClick,NewsAction') as user_depth
from ods_news1.event
where  (
event in ('SignUp') 
or (event='AppClick' and element_page='新闻列表页' )
or (event='AppClick' and element_page='内容详情页' )
or (event='NewsAction' and action_type='评论' )
)
and logday>='20201227' and logday<'20201230'
group by distinct_id

完整sql

select funnel_merger(user_depth, 4) as funnel_array from(
select funnel(ctime, 86400*1000*3, event, 'SignUp,AppClick,NewsAction,SignIn') as user_depth
from ods_news1.event
where  (
event in ('SignUp') 
or (event='AppClick' and element_page='新闻列表页' )
or (event='NewsAction' and action_type='评论' )
or (event='SignIn')
)
and logday>='20200923' and logday<'20200925'
group by distinct_id
);

注意:我的数据里面没有AppPageView数据,所以我在执行的时候没有添加它,但是我添加了两个AppClick就不对了,因为我们在开发UDAF的时候里面设置的是Map类型结构,我们获取Event名称的时候,发现相同Key了,而Map的Key是唯一的,所以你写入Key值得时候,会被覆盖,那么数据就乱了,所以这里我选择了一个SignIn,这个字段也没有的,只是代替一下,所以大家在操作的时候要看一下你的数据是否有这几个事件,不然结果就有可能不对。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/314694.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何有效提高矢量网络分析仪的动态范围

动态范围是网络分析仪&#xff08;VNA&#xff09;接收机的最大输入功率与最小可测量功率&#xff08;本底噪声&#xff09;之间的差值&#xff0c;如图所示&#xff0c;要使测量有效&#xff0c;输入信号必须在这些边界内。 如果需要测量信号幅度非常大的变化&#xff0c;例如…

构建基于RHEL8系列(CentOS8,AlmaLinux8,RockyLinux8等)的Nginx1.24.0的RPM包

本文适用&#xff1a;rhel8系列&#xff0c;或同类系统(CentOS8,AlmaLinux8,RockyLinux8等) 文档形成时期&#xff1a;2022-2023年 因系统版本不同&#xff0c;构建部署应略有差异&#xff0c;但本文未做细分&#xff0c;对稍有经验者应不存在明显障碍。 因软件世界之复杂和个人…

SpringBoot 引入分页插件 PageHelper

官网 https://pagehelper.github.io/docs/howtouse/ 引入步骤 第1步&#xff1a;引入依赖 <!--分页插件--> <dependency><groupId>com.github.pagehelper</groupId><artifactId>pagehelper</artifactId><version>5.3.2</ver…

GBASE南大通用数据库如何检索单行

SELECT 语句返回的行集是它的活动集。单个 SELECT 语句返回单个行。您可使用嵌入式 SELECT 语句来从数据库将单个行检索到主变量内。然而&#xff0c;当 SELECT 语句返回多行数 据时&#xff0c;程序必须使用游标来一次检索一行。在 检索多行 中讨论“多行”选择操作。 要检索单…

STL——stack容器和queue容器详解

目录 &#x1f4a1;stack &#x1f4a1;基本概念 常用接口 &#x1f4a1;queue &#x1f4a1;基本概念 &#x1f4a1;常用接口 &#x1f4a1;stack &#x1f4a1;基本概念 栈&#xff08;stack&#xff09;&#xff1a;一种特殊的线性表&#xff0c;其只允许在固定的一端…

【Web】forward 和 redirect 的区别

&#x1f34e;个人博客&#xff1a;个人主页 &#x1f3c6;个人专栏&#xff1a;Web ⛳️ 功不唐捐&#xff0c;玉汝于成 目录 前言 正文 Forward&#xff08;转发&#xff09;&#xff1a; Redirect&#xff08;重定向&#xff09;&#xff1a; 区别总结&#xff1a; …

NeRF 其一:NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF 其一&#xff1a;NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 1. 什么是神经辐射场2. 论文简述3. 体渲染3.1 视线3.2 体渲染-连续3.3 体渲染-离散 4. 神经网络与位置编码4.1 神经网络4.2 视线角度为什么需要视角向量 d \boldsymbol{d} d&…

使用Pygame库来显示一个简单的窗口,并绘制一些基本的形状和文本

import pygame from pygame.locals import *# 初始化pygame库 pygame.init()# 创建窗口并设置大小和标题 screen_width 800 screen_height 600 screen pygame.display.set_mode((screen_width, screen_height)) pygame.display.set_caption("My Pygame")# 定义颜色…

鸿蒙原生应用再添新丁!天眼查 入局鸿蒙

鸿蒙原生应用再添新丁&#xff01;天眼查 入局鸿蒙 来自 HarmonyOS 微博1月12日消息&#xff0c;#天眼查启动鸿蒙原生应用开发#作为累计用户数超6亿的头部商业信息查询平台&#xff0c;天眼查可以为商家企业&#xff0c;职场人士以及普通消费者等用户便捷和安全地提供查询海量…

使用U盘作为系统的启动盘

1.我们使用到的工具ventoy-1.0.96.rar 下载资源 https://download.csdn.net/download/u011442726/88735129 2.怎么使用 ventoy软件的使用非常简单&#xff0c;直接解压后&#xff0c;把u盘插到电脑&#xff0c;然后点击exe这个文件即可。 然后点击之后&#xff0c;直接点击安…

Python基础知识:整理11 模块的导入、自定义模块和安装第三方包

1 模块的导入 1.1 使用import 导入time模块&#xff0c;使用sleep功能&#xff08;函数&#xff09; import time print("start") time.sleep(3) print("end")1.2 使用from 导入time的sleep功能 from time import sleep print("start") slee…

Error: start of central directory not found; zipfile corrupt.

【报错】使用 unzip 指令在 AutoDL 上解压 .zip 文件时遇到 Error: start of central directory not found; zipfile corrupt. 报错&#xff1a; 重新上传后还是解压失败排除了 .zip 文件上传中断的问题。 【原因】Windows 和 Linux 下的压缩文件的二进制格式有所不同&#x…

【UE Niagara学习笔记】04 - 火焰喷射时的黑烟效果

目录 效果 步骤 一、创建烟雾材质 二、添加新的发射器 三、设置新发射器 3.1 删除Color模块 3.2 减少生成的粒子数量 3.3 设置粒子初始颜色 3.4 设置烟雾的位置偏移 3.5 设置烟雾淡出 在上一篇博客&#xff08;【UE Niagara学习笔记】03 - 火焰喷射效果&#xf…

【算法】动态中位数(对顶堆)

题目 依次读入一个整数序列&#xff0c;每当已经读入的整数个数为奇数时&#xff0c;输出已读入的整数构成的序列的中位数。 输入格式 第一行输入一个整数 P&#xff0c;代表后面数据集的个数&#xff0c;接下来若干行输入各个数据集。 每个数据集的第一行首先输入一个代表…

设计一个简易版的数据库路由

&#x1f44f;作者简介&#xff1a;大家好&#xff0c;我是爱吃芝士的土豆倪&#xff0c;24届校招生Java选手&#xff0c;很高兴认识大家&#x1f4d5;系列专栏&#xff1a;Spring原理、JUC原理、Kafka原理、分布式技术原理、数据库技术&#x1f525;如果感觉博主的文章还不错的…

Linux的发展历程:从诞生到全球应用

一、前言 Linux作为一个开源操作系统&#xff0c;经历了令人瞩目的发展历程。从最初的创意到如今在全球范围内得到广泛应用&#xff0c;Linux不仅是技术的杰出代表&#xff0c;更是开源精神的典范。本文将追溯Linux的发展历程&#xff0c;深入了解它是如何从一个个人项目演变为…

Vue-根据角色获取菜单动态添加路由

文章目录 前提提要需求分析具体实现配置静态路由路由权限判断登录添加动态路由修复刷新路由丢失问题 结语 如果大家写过后台管理系统的项目&#xff0c;那么动态路由一定是绕不开的&#xff0c;如果想偷懒的话&#xff0c;就把所有路由一开始都配置好&#xff0c;然后只根据后端…

以报时机器人为例详细介绍tracker_store和event_broker

报时机器人源码参考[1][2]&#xff0c;本文重点介绍当 tracker_store 类型为 SQL 时&#xff0c;events 表的表结构以及数据是如何生成的。以及当 event_broker 类型为 SQL 时&#xff0c;events 表的表结构以及数据是如何生成的。 一.报时机器人启动 [3] Rasa 对话系统启动方…

解决命令行无法启动scrapy爬虫

前言 最近在准备毕设项目&#xff0c;想使用scrapy架构来进行爬虫&#xff0c;找了一个之前写过的样例&#xff0c;没想到在用普通的启动命令时报错。报错如下 无法将“scrapy”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写&#xff0c;如果包括路径…

最大公共子串

解题思路&#xff1a; 解题代码&#xff1a; UP主运用的方法很巧妙。厉害。