leetcode 动态规划(爬楼梯、零钱兑换、完全平方数)

70. 爬楼梯(进阶版)

卡码网:57. 爬楼梯(opens new window)

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬至多m (1 <= m < n)个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

输入描述:输入共一行,包含两个正整数,分别表示n, m

输出描述:输出一个整数,表示爬到楼顶的方法数。

输入示例:3 2

输出示例:3

提示:

当 m = 2,n = 3 时,n = 3 这表示一共有三个台阶,m = 2 代表你每次可以爬一个台阶或者两个台阶。

此时你有三种方法可以爬到楼顶。

1 阶 + 1 阶 + 1 阶段
1 阶 + 2 阶
2 阶 + 1 阶

思路

之前讲这道题目的时候,因为还没有讲背包问题,所以就只是讲了一下爬楼梯最直接的动规方法(斐波那契)。

这次终于讲到了背包问题,我选择带录友们再爬一次楼梯!

这道题目 我们在动态规划:爬楼梯 (opens new window)中已经讲过一次了,这次我又给本题加点料,力扣上没有原题,所以可以在卡码网57. 爬楼梯 (opens new window)上来刷这道题目。

我们之前做的 爬楼梯 是只能至多爬两个台阶。

这次改为:一步一个台阶,两个台阶,三个台阶,…,直到 m个台阶。问有多少种不同的方法可以爬到楼顶呢?

这又有难度了,这其实是一个完全背包问题。

1阶,2阶,… m阶就是物品,楼顶就是背包。

每一阶可以重复使用,例如跳了1阶,还可以继续跳1阶。

问跳到楼顶有几种方法其实就是问装满背包有几种方法。

此时大家应该发现这就是一个完全背包问题了!

和昨天的题目动态规划:377. 组合总和 Ⅳ (opens new window)基本就是一道题了。

动规五部曲分析如下:

确定dp数组以及下标的含义
dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法。

确定递推公式
在动态规划:494.目标和 (opens new window)、 动态规划:518.零钱兑换II (opens new window)、动态规划:377. 组合总和 Ⅳ (opens new window)中我们都讲过了,求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];

本题呢,dp[i]有几种来源,dp[i - 1],dp[i - 2],dp[i - 3] 等等,即:dp[i - j]

那么递推公式为:dp[i] += dp[i - j]

dp数组如何初始化
既然递归公式是 dp[i] += dp[i - j],那么dp[0] 一定为1,dp[0]是递归中一切数值的基础所在,如果dp[0]是0的话,其他数值都是0了。

下标非0的dp[i]初始化为0,因为dp[i]是靠dp[i-j]累计上来的,dp[i]本身为0这样才不会影响结果

确定遍历顺序
这是背包里求排列问题,即:1、2 步 和 2、1 步都是上三个台阶,但是这两种方法不一样!

所以需将target放在外循环,将nums放在内循环。

每一步可以走多次,这是完全背包,内循环需要从前向后遍历。

举例来推导dp数组
介于本题和动态规划:377. 组合总和 Ⅳ (opens new window)几乎是一样的,这里我就不再重复举例了。

以上分析完毕,C++代码如下:

#include <iostream>
#include <vector>
using namespace std;
int main() {
    int n, m;
    while (cin >> n >> m) {
        vector<int> dp(n + 1, 0);
        dp[0] = 1;
        for (int i = 1; i <= n; i++) { // 遍历物品
            for (int j = 1; j <= m; j++) { // 遍历背包
                if (i - j >= 0) dp[i] += dp[i - j];
            }
        }
        cout << dp[n] << endl;
    }
}

322. 零钱兑换

力扣题目链接(opens new window)

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。

你可以认为每种硬币的数量是无限的。

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1
示例 2:

输入:coins = [2], amount = 3
输出:-1
示例 3:

输入:coins = [1], amount = 0
输出:0
示例 4:

输入:coins = [1], amount = 1
输出:1
示例 5:

输入:coins = [1], amount = 2
输出:2
提示:

1 <= coins.length <= 12
1 <= coins[i] <= 2^31 - 1
0 <= amount <= 10^4

思路

在动态规划:518.零钱兑换II (opens new window)中我们已经兑换一次零钱了,这次又要兑换,套路不一样!

题目中说每种硬币的数量是无限的,可以看出是典型的完全背包问题。

动规五部曲分析如下:

确定dp数组以及下标的含义
dp[j]:凑足总额为j所需钱币的最少个数为dp[j]

确定递推公式
凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])

所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。

递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);

dp数组如何初始化
首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;

其他下标对应的数值呢?

考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。

所以下标非0的元素都是应该是最大值。

代码如下:

vector<int> dp(amount + 1, INT_MAX);
dp[0] = 0;

确定遍历顺序
本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。

所以本题并不强调集合是组合还是排列。

如果求组合数就是外层for循环遍历物品,内层for遍历背包。

如果求排列数就是外层for遍历背包,内层for循环遍历物品。

在动态规划专题我们讲过了求组合数是动态规划:518.零钱兑换II (opens new window),求排列数是动态规划:377. 组合总和 Ⅳ (opens new window)。

所以本题的两个for循环的关系是:外层for循环遍历物品,内层for遍历背包或者外层for遍历背包,内层for循环遍历物品都是可以的!

那么我采用coins放在外循环,target在内循环的方式。

本题钱币数量可以无限使用,那么是完全背包。所以遍历的内循环是正序

综上所述,遍历顺序为:coins(物品)放在外循环,target(背包)在内循环。且内循环正序。

举例推导dp数组
以输入:coins = [1, 2, 5], amount = 5为例
在这里插入图片描述
dp[amount]为最终结果。

以上分析完毕,C++ 代码如下:

// 版本一

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        vector<int> dp(amount + 1, INT_MAX);
        dp[0] = 0;
        for (int i = 0; i < coins.size(); i++) { // 遍历物品
            for (int j = coins[i]; j <= amount; j++) { // 遍历背包
                if (dp[j - coins[i]] != INT_MAX) { // 如果dp[j - coins[i]]是初始值则跳过
                    dp[j] = min(dp[j - coins[i]] + 1, dp[j]);
                }
            }
        }
        if (dp[amount] == INT_MAX) return -1;
        return dp[amount];
    }
};

时间复杂度: O(n * amount),其中 n 为 coins 的长度
空间复杂度: O(amount)
对于遍历方式遍历背包放在外循环,遍历物品放在内循环也是可以的,我就直接给出代码了

// 版本二

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        vector<int> dp(amount + 1, INT_MAX);
        dp[0] = 0;
        for (int i = 1; i <= amount; i++) {  // 遍历背包
            for (int j = 0; j < coins.size(); j++) { // 遍历物品
                if (i - coins[j] >= 0 && dp[i - coins[j]] != INT_MAX ) {
                    dp[i] = min(dp[i - coins[j]] + 1, dp[i]);
                }
            }
        }
        if (dp[amount] == INT_MAX) return -1;
        return dp[amount];
    }
};

Python:
先遍历物品 后遍历背包

class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        dp = [float('inf')] * (amount + 1)  # 创建动态规划数组,初始值为正无穷大
        dp[0] = 0  # 初始化背包容量为0时的最小硬币数量为0

        for coin in coins:  # 遍历硬币列表,相当于遍历物品
            for i in range(coin, amount + 1):  # 遍历背包容量
                if dp[i - coin] != float('inf'):  # 如果dp[i - coin]不是初始值,则进行状态转移
                    dp[i] = min(dp[i - coin] + 1, dp[i])  # 更新最小硬币数量

        if dp[amount] == float('inf'):  # 如果最终背包容量的最小硬币数量仍为正无穷大,表示无解
            return -1
        return dp[amount]  # 返回背包容量为amount时的最小硬币数量

先遍历背包 后遍历物品

class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        dp = [float('inf')] * (amount + 1)  # 创建动态规划数组,初始值为正无穷大
        dp[0] = 0  # 初始化背包容量为0时的最小硬币数量为0

        for i in range(1, amount + 1):  # 遍历背包容量
            for j in range(len(coins)):  # 遍历硬币列表,相当于遍历物品
                if i - coins[j] >= 0 and dp[i - coins[j]] != float('inf'):  # 如果dp[i - coins[j]]不是初始值,则进行状态转移
                    dp[i] = min(dp[i - coins[j]] + 1, dp[i])  # 更新最小硬币数量

        if dp[amount] == float('inf'):  # 如果最终背包容量的最小硬币数量仍为正无穷大,表示无解
            return -1
        return dp[amount]  # 返回背包容量为amount时的最小硬币数量

先遍历物品 后遍历背包(优化版)

class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        dp = [float('inf')] * (amount + 1)
        dp[0] = 0

        for coin in coins:
            for i in range(coin, amount + 1): # 进行优化,从能装得下的背包开始计算,则不需要进行比较
                # 更新凑成金额 i 所需的最少硬币数量
                dp[i] = min(dp[i], dp[i - coin] + 1)

        return dp[amount] if dp[amount] != float('inf') else -1

先遍历背包 后遍历物品(优化版)

class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        dp = [float('inf')] * (amount + 1)
        dp[0] = 0

        for i in range(1, amount + 1):  # 遍历背包容量
            for coin in coins:  # 遍历物品
                if i - coin >= 0:
                    # 更新凑成金额 i 所需的最少硬币数量
                    dp[i] = min(dp[i], dp[i - coin] + 1)

        return dp[amount] if dp[amount] != float('inf') else -1

279.完全平方数

力扣题目链接(opens new window)

给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, …)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。

给你一个整数 n ,返回和为 n 的完全平方数的 最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。

示例 1:

输入:n = 12
输出:3
解释:12 = 4 + 4 + 4
示例 2:

输入:n = 13
输出:2
解释:13 = 4 + 9
提示:

1 <= n <= 10^4

思路

可能刚看这种题感觉没啥思路,又平方和的,又最小数的。

我来把题目翻译一下:完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?

感受出来了没,这么浓厚的完全背包氛围,而且和昨天的题目动态规划:322. 零钱兑换 (opens new window)就是一样一样的!

动规五部曲分析如下:

确定dp数组(dp table)以及下标的含义
dp[j]:和为j的完全平方数的最少数量为dp[j]

确定递推公式
dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。

此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]);

dp数组如何初始化
dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0。

有同学问题,那0 * 0 也算是一种啊,为啥dp[0] 就是 0呢?

看题目描述,找到若干个完全平方数(比如 1, 4, 9, 16, …),题目描述中可没说要从0开始,dp[0]=0完全是为了递推公式。

非0下标的dp[j]应该是多少呢?

从递归公式dp[j] = min(dp[j - i * i] + 1, dp[j]);中可以看出每次dp[j]都要选最小的,所以非0下标的dp[j]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖。

确定遍历顺序
我们知道这是完全背包,

如果求组合数就是外层for循环遍历物品,内层for遍历背包。

如果求排列数就是外层for遍历背包,内层for循环遍历物品。

在动态规划:322. 零钱兑换 (opens new window)中我们就深入探讨了这个问题,本题也是一样的,是求最小数!

所以本题外层for遍历背包,内层for遍历物品,还是外层for遍历物品,内层for遍历背包,都是可以的!

我这里先给出外层遍历背包,内层遍历物品的代码:

ector<int> dp(n + 1, INT_MAX);
dp[0] = 0;
for (int i = 0; i <= n; i++) { // 遍历背包
    for (int j = 1; j * j <= i; j++) { // 遍历物品
        dp[i] = min(dp[i - j * j] + 1, dp[i]);
    }
}

举例推导dp数组
已输入n为5例,dp状态图如下:
在这里插入图片描述
dp[0] = 0 dp[1] = min(dp[0] + 1) = 1 dp[2] = min(dp[1] + 1) = 2 dp[3] = min(dp[2] + 1) = 3 dp[4] = min(dp[3] + 1, dp[0] + 1) = 1 dp[5] = min(dp[4] + 1, dp[1] + 1) = 2

最后的dp[n]为最终结果。

以上动规五部曲分析完毕C++代码如下:

// 版本一

class Solution {
public:
    int numSquares(int n) {
        vector<int> dp(n + 1, INT_MAX);
        dp[0] = 0;
        for (int i = 0; i <= n; i++) { // 遍历背包
            for (int j = 1; j * j <= i; j++) { // 遍历物品
                dp[i] = min(dp[i - j * j] + 1, dp[i]);
            }
        }
        return dp[n];
    }
};

时间复杂度: O(n * √n)
空间复杂度: O(n)
同样我在给出先遍历物品,在遍历背包的代码,一样的可以AC的。

// 版本二

class Solution {
public:
    int numSquares(int n) {
        vector<int> dp(n + 1, INT_MAX);
        dp[0] = 0;
        for (int i = 1; i * i <= n; i++) { // 遍历物品
            for (int j = i * i; j <= n; j++) { // 遍历背包
                dp[j] = min(dp[j - i * i] + 1, dp[j]);
            }
        }
        return dp[n];
    }
};

Python:
先遍历物品, 再遍历背包

class Solution:
    def numSquares(self, n: int) -> int:
        dp = [float('inf')] * (n + 1)
        dp[0] = 0

        for i in range(1, n + 1):  # 遍历背包
            for j in range(1, int(i ** 0.5) + 1):  # 遍历物品
                # 更新凑成数字 i 所需的最少完全平方数数量
                dp[i] = min(dp[i], dp[i - j * j] + 1)

        return dp[n]

先遍历背包, 再遍历物品

class Solution:
    def numSquares(self, n: int) -> int:
        dp = [float('inf')] * (n + 1)
        dp[0] = 0

        for i in range(1, int(n ** 0.5) + 1):  # 遍历物品
            for j in range(i * i, n + 1):  # 遍历背包
                # 更新凑成数字 j 所需的最少完全平方数数量
                dp[j] = min(dp[j - i * i] + 1, dp[j])

        return dp[n]

其他版本

class Solution:
    def numSquares(self, n: int) -> int:
        # 创建动态规划数组,初始值为最大值
        dp = [float('inf')] * (n + 1)
        # 初始化已知情况
        dp[0] = 0

        # 遍历背包容量
        for i in range(1, n + 1):
            # 遍历完全平方数作为物品
            j = 1
            while j * j <= i:
                # 更新最少完全平方数的数量
                dp[i] = min(dp[i], dp[i - j * j] + 1)
                j += 1

        # 返回结果
        return dp[n]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/314219.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

RedisTemplate使用zadd报错java.lang.StackOverflowError

代码当中使用RedisTemplate操作String、List都是正常的&#xff0c;但是操作zadd就会报错&#xff0c;有人说是这两个依赖的版本不一致的问题&#xff0c;但是项目中还有其他地方要用到&#xff0c;所以改版本号行不通&#xff0c; <dependency><groupId>org.redis…

DHCP与时间同步

目录 一、DHCP 1、DHCP定义 1.什么是DHCP 2.DHCP的好处 3.DHCP的分配方式 4.为什么使用DHCP 5.DHCP模式 2、DHCP的工作过程 3、DHCP动态配置主机地址 1.DHCP服务的优点 2.可分配的地址信息 3.动态分配IP地址 二、时间同步 1、ntp 2、chrony 1、搭建本地本地时间…

SpringSecurity入门demo(一)集成与默认认证

一、集成与默认认证&#xff1a; 1、说明&#xff1a;在引入 Spring Security 项目之后&#xff0c;没有进行任何相关的配置或编码的情况下&#xff0c;Spring Security 有一个默认的运行状态&#xff0c;要求在经过 HTTP 基本认证后才能访问对应的 URL 资源&#xff0c;其默认…

对于软件测试的认识和了解

对软件测试的认识&#xff1a; 软件测试要求开发人员避免测试自己开发的程序。从心理学角度讲&#xff0c;这是很有道理的。特别是一个相对复杂的系统&#xff0c;开发人员在刚刚开发完成的时候&#xff0c;尚沉浸于对自己设计的回味之中。此时去测试的话往往会侧重于程序本身的…

啥,凭什么Python中函数的返回值可以有多个?

你好&#xff0c;我是安然无虞。 文章目录 函数函数定义格式函数调用默认参数和变长参数默认参数变长参数 变量的作用域 函数 编程语言中的函数&#xff0c;是一段可以被重复使用的代码片段&#xff0c;使用函数能够减少冗余的代码。 函数定义格式 def 函数名(形参列表):函数…

JavaScript高级程序设计读书记录(十二):函数

函数是ECMAScript中最有意思的部分之一&#xff0c;这主要是因为函数实际上是对象。每个函数都是Function 类型的实例&#xff0c;而 Function 也有属性和方法&#xff0c;跟其他引用类型一样。因为函数是对象&#xff0c;所以函数名就是 指向函数对象的指针&#xff0c;而且不…

Python 解决安装三方包失败的问题

pip 安装三方包失败&#xff0c;常见的情况有三种&#xff1a;不能访问源所在服务器&#xff1b;Python 版本不支持&#xff1b;和本地版本冲突。 不能访问源服务器 对于这张问题&#xff0c;有两种解决方法 # 方法一 pip config set global.index-url <源服务器> pip…

文件操作(你真的会读写文件吗?)

文章目录 一、为什么使用文件&#xff1f;二、什么是文件&#xff1f;2.1 程序文件2.2 数据文件2.3 文件名 三、二进制文件和文本文件3.1 二进制文件3.2 文本文件 四、文件的打开和关闭4.1 流和标准流4.1.1 流4.1.2 标准流 4.2 文件指针4.3 fopen和fclose 五、文件的顺序读写5.…

多无人机集群智能flocking

matlab2020可运行 GitHub - pareshbhambhani/MultiAgent-Flocking-framework: This is part of the current research I am working on.

NX二次开发点通过云配准获取相同体

先找到体的参考方向&#xff08;这个参考方向对于相同体重合之后是相同的&#xff09;&#xff0c;这个时候我们的思路是三个不共线的点确定一个坐标系&#xff0c;然后和绝对方向求转换矩阵。然后获取体的所有边的几何中心&#xff0c;把这些点通过转换矩阵转换之后存起来&…

因成本不断增加,阿里云发布区域调价公告|一周IT资讯

因成本不断增加&#xff0c;阿里云发布域名调价公告 1月9日晚&#xff0c;阿里云在官网发布域名调价公告&#xff1a;因注册局成本上调、域名实名制审核等服务成本不断增加&#xff0c;经慎重考虑&#xff0c;现决定于2024年2月1日&#xff0c;对 .net 英文域名进行价格调整&a…

Java的NIO

Java NIO&#xff08;New I/O&#xff0c;新 I/O&#xff09;是 Java 1.4 版本引入的一组用于进行非阻塞 I/O 操作的 API。相比于传统的 Java I/O&#xff08;或称为 IOStream&#xff09;&#xff0c;Java NIO 提供了更为灵活、可扩展和高性能的 I/O 处理方式。 Java NIO 的核…

【昕宝爸爸小模块】深入浅出之Java 8中的 Stream

深入浅出之Java 8中的 Stream 一、&#x1f7e2;典型解析1.1 &#x1f7e0;Java 8中的Stream 都能做什么1.2 &#x1f7e0;Stream的创建 二、✅ Stream中间操作2.1 &#x1f7e0;Filter2.2 &#x1f7e0;Map2.3 &#x1f7e0;limit / skip2.4 &#x1f7e0;sorted2.5 &#x1…

FFmpeg编程录制音频(Mac OS)

之前我们使用FFmpeg命令行工具进行了简单的音视频操作&#xff0c;这次在Mac OS环境下编写代码实现简单的音频录制功能。 FFmpeg命令行音频录制 首先回顾一下Mac OS环境下简单的音频录制命令行实现&#xff1a; ffmpeg -f avfoundation -i ":0" -t 20 -acodec pcm…

电商平台如何引爆用户自主裂变:从策略到实践的全面解析

在当今竞争激烈的电商市场中&#xff0c;用户裂变成为企业持续增长的关键。如何引导用户自发传播&#xff0c;实现口碑与销量的双赢&#xff0c;是电商平台必须面对的挑战。本文将深入探讨电商平台如何通过精心策划和实施策略&#xff0c;激发用户自主裂变&#xff0c;助力企业…

蓝屏代码0x000007E解决办法

概述 出现该问题&#xff1a; 1、硬件冲突造成的蓝屏 驱动冲突&#xff1a;与其他设备或应用程序的驱动冲突可能会引起系统崩溃。 2、内存虚拟不足造成的蓝屏 错误配置&#xff1a;不正确的配置或设置可能会导致蓝屏错误。 3、超频后也可能出现蓝屏 CUP超频或者显卡超频后出现蓝…

水汽稳定度修正函数\Psi_q对潜热通量影响--模式验证工作

我之前提出了一个水汽通量廓线关系&#xff0c;这项工作偏理论&#xff0c;如果对下面说的背景不了解的话可以看下 https://agupubs.onlinelibrary.wiley.com/share/YNSG74MV8B8BAAUMCHN3?target10.1029/2022JD036708 那会没把提出的水汽稳定度修正函数加到CAS-ESM,当时对CAS-…

Ubuntu20.04-剪贴板

针对图形界面用户 1.两种方式 1.1 安装Parcellite 简单轻量级剪贴板管理器 sudo apt install parcellite 1.2 安装Gpaste 更强大的剪贴板管理器&#xff0c;包含历史记录和同步功能 sudo apt install gpaste

仿真验证方法(1)——动态验证

一、概述 1.1 验证的目的和方法 在现代集成电路设计中&#xff0c;验证所占工作量超过70%。验证要求真实而完备&#xff0c;它决定了设计的成败与成本。 验证的目的 原始描述是否正确&#xff1f;&#xff08;代码&#xff09; 逻辑功能是否正确&#xff1f;&#xff08;功能…

MATLAB--pie函数绘制分类饼图(1)--附案例代码

MATLAB–pie函数绘制分类饼图&#xff08;1&#xff09; 目录 MATLAB--pie函数绘制分类饼图&#xff08;1&#xff09;摘要1. pie函数概述2. 使用pie函数绘制分类图的步骤步骤1&#xff1a;准备数据步骤2&#xff1a;调用pie函数步骤3&#xff1a;定制图形&#xff08;可选&…