打破硬件壁垒:TVM 助力 AI技术跨平台部署

文章目录

  • 《TVM编译器原理与实践》
    • 编辑推荐
    • 内容简介
    • 作者简介
    • 目录
    • 前言/序言
    • 获取方式


随着人工智能(Artificial Intelligence,AI)在全世界信息产业中的广泛应用,深度学习模型已经成为推动AI技术革命的关键。TensorFlow、PyTorch、MXNet、Caffe等深度学习模型已经在服务器级GPU上取得了显著的成果。然而,大多数现有的系统框架只针对小范围的服务器级GPU进行过优化,因此需要做很多的优化努力,以便在汽车、手机端、物联网设备及专用加速器(FPGA、ASIC)等其他平台上部署。为了解决这一问题,TVM应运而生。

TVM是一个基于中间表示(IR)的统一解决方案,它能自动优化深度学习模型,并提供跨平台的高效开源部署框架。有了TVM的帮助,只需要很少的定制工作,就可以轻松地在手机、嵌入式设备甚至浏览器上运行深度学习模型。此外,TVM还为多种硬件平台上的深度学习计算提供了统一的优化框架,包括一些有自主研发计算原语的专用加速器。

TVM是一个深度学习编译器,所有人都能随时随地使用开源框架学习研发。围绕TVM形成了多元化社区,社区成员包括硬件供应商、编译器工程师和机器学习研究人员等,共同构建了一个统一的可编程软件堆栈,丰富了整个机器学习技术生态系统。

TVM是一个新型的AI编译器,广泛应用于各种产品研发中,在企业与学术研究中有很大的影响。通过TVM,深度学习模型可以在更广泛的硬件平台上得到优化和部署,从而推动AI技术的普及和发展。

首先,TVM解决了深度学习模型在不同硬件平台上的部署问题。由于现有的系统框架主要针对服务器级GPU进行优化,因此在其他平台上部署深度学习模型往往需要大量的定制工作。而TVM提供了一个统一的优化框架,可以自动将深度学习模型优化到不同的硬件平台上,大大减少了部署的难度和工作量。

其次,TVM提高了深度学习模型在不同硬件平台上的性能。通过自动优化和调优,TVM可以在保证模型准确性的同时,提高模型在不同硬件平台上的运行速度和能效。这对于在资源受限的设备上运行深度学习模型具有重要意义,例如在手机、嵌入式设备和物联网设备上。

此外,TVM还支持多种专用加速器,如FPGA和ASIC。这些加速器具有很高的计算性能和能效,但通常需要定制化的开发流程。通过TVM,用户可以将这些加速器纳入统一的优化框架,从而充分利用它们的优势。

TVM作为一个开源项目,吸引了来自世界各地的开发者和企业参与其中。围绕TVM形成了一个多元化的社区,社区成员共同推动TVM的发展和完善。这种开放的合作模式有助于加速AI技术的创新和应用。

总之,TVM作为一个基于中间表示的统一解决方案,为深度学习模型在不同硬件平台上的优化和部署提供了强大的支持。通过TVM,深度学习模型可以在更广泛的硬件平台上得到应用,从而推动AI技术的普及和发展。同时,围绕TVM形成的多元化社区也为整个机器学习技术生态系统的繁荣做出了重要贡献。


《TVM编译器原理与实践》

在这里插入图片描述
适读人群 :从事AI算法,软件,AI芯片,编译器开发工程技术人员

编辑推荐

人工智能(Artificial Intelligence,AI)已经在全世界信息产业中获得广泛应用。深度学习模型推动了AI技术革命,如 TensorFlow、PyTorch、MXNet、Caffe等。大多数现有的系统框架只针对小范围的服务器级 GPU进行过优化,因此需要做很多的优化努力,以便在汽车、手机端、物联网设备及专用加速器(FPGA、ASIC)等其他平台上部署。随着深度学习模型和硬件后端数量的增加,TVM构建了一种基于中间表示 (IR)的统一解决方案。TVM不仅能自动优化深度学习模型,还提供了跨平台的高效开源部署框架。大模型的热度逐渐上升,将人工智能理论及算法框架转为落地项目实现,TVM是一个很好的桥梁。因此,本书将得到广大读者的喜爱。

内容简介

TVM(Tensor Virtual Machine, 张量虚拟机)是一种开源的模型编译框架,旨在将机器学习模型自动编译成可供下层硬件执行的机器语言,从而利用多种类型的算力。其工作原理是,先将深度学习模型进行优化推理、内存管理与线程调度,再借用LLVM框架将模型部署在CPU、GPU、FPGA、ARM等硬件设备上。
本书全面解析TVM的主要功能,帮助读者理解TVM工作原理,以及使用 TVM对深度学习与机器学习进行优化与部署。
本书结合作者多年的工作与学习经验,力求将TVM基础理论与案例实践融合在一起进行详细讲解。全书共9章,包括TVM基本知识,使用TVM开发,算子融合与图优化,TVM量化技术,TVM 优化调度,Relay IR,代码生成,后端部署与OpenCL(Open Computing Language,开放运算语言),自动调度、自动搜索与成本模型。各章除了包含重要的知识点和实践技能外,还配备了精心挑选的典型案例。
本书适合从事AI算法、软件、编译器开发以及硬件开发等专业的工程技术人员、科研工作人员、技术管理人员阅读,也可以作为编译器相关专业高校师生的参考用书。

作者简介

吴建明,上海交通大学模式识别与智能系统专业博士毕业。长期从事人工智能芯片设计,尤其擅长TVM/LLVM编译器、AI框架、自动驾驶、芯片制造,嵌入式系统等领域的理论研究与技术创新。长期在一线工作,包括产品设计与代码实现等,主持和参与过30多项产品的研发。还参与过国家自然科学基金、上海市科委项目,并在核心期刊公开发表过8篇论文,其中6篇是第一作者。

目录

1TVM基本知识/
1.1TVM基本原理/
1.1.1TVM概述/
1.1.2TVM 模型优化部署概述/
1.2TVM编译过程/
1.2.1编译流程/
1.2.2TVM编译数据结构/
1.2.3TVM编译数据处理/
1.2.4TVM的Pass过程/
1.3TVM开源工程逻辑架构/
1.3.1代码库代码结构/
1.3.2代码自动内核/
1.4TVM应用支持/
1.4.1TVM的工作流程/
1.4.2支持多语言与多平台/
1.4.3TVM应用场景/
1.4.4TVM优化模型推理/
1.4.5TVM编译器与运行时组件/
1.4.6TVM运行时主要模块/
1.4.7TVM简单代码生成编译示例/
1.4.8TVM各模块之间的关系/
1.5TVM特色与挑战/
1.5.1TVM特色/
1.5.2支持多种后端设备/
1.5.3TVM应对的挑战/2章 使用TVM开发/
2.1配置TVM环境/
2.1.1apache TVM源码下载/
2.1.2配置TVM的开发环境/
2.1.3TVM conda环境使用方法/
2.1.4编译实现/
2.1.5导入模型方法/
2.2在conda环境编译优化TVM yolov3示例/
2.3Python与C++的调用关系/
2.3.1TVM中底层C++数据结构/
2.3.2进行函数注册/
2.3.3上层Python调用/
2.4TVM自定义代码示例/
2.4.1TVM如何添加代码/
2.4.2TVM代码生成实现示例/
2.5TVM实现算法全流程/
2.5.1配置张量与创建调度/
2.5.2进行降级算子优化/
2.5.3构建host目标程序/
2.5.4实现后端代码生成/3章 算子融合与图优化/
3.1算子概述/
3.1.1TVM融合组件示例/
3.1.2优化计算图/
3.2GCN融合/
3.2.1图的概念/
3.2.2深度学习新特征/
3.3图融合GCN示例/
3.3.1GCN的PyTorch实现/
3.3.2融合BN与Conv层/
3.4TVM图优化与算子融合/
3.4.1图与算子优化/
3.4.2自定义算子/
3.4.3算子融合步骤/
3.4.4向Relay中添加operator/
3.5端到端优化/
3.5.1 AI框架概述/
3.5.2计算图优化层/
3.5.3TVM算子融合的4种方法/
3.5.4数据布局转换/
3.5.5张量表达式语言/
3.5.6调度空间分析/
3.6 TVM图优化与算子融合方案分析/
3.6.1图优化框架分析/
3.6.2TVM优化基础分析/
3.6.3TVM优化参数/
3.6.4算子优化图示/
3.6.5自定义图级优化/
3.7支配树技术/
3.7.1支配树概述/
3.7.2算子融合方案及示例/
3.8控制流与优化器/
3.8.1控制流/
3.8.2优化器/
3.9TVM存储与调度/
3.9.1TVM编译器优化/
3.9.2图结构基本优化/
3.9.3张量计算/
3.10多功能张量加速器VTA/
3.10.1VTA-TVM 硬件-软件堆栈/
3.10.2VTA主要功能/
3.10.3VTA示例/
3.10.4VTA计算模块/
3.10.5VTA控制/
3.10.6microTVM模型/
3.11TVM代码库结构与示例/
3.11.1代码库结构/
3.11.2张量添加示例/
3.12主机驱动的执行/
3.12.1 firmware二进制文件/
3.12.2计算声明/
3.12.3数据平铺/
3.12.4卷积运算/
3.12.5空间填充/4TVM量化技术/
4.1TVM量化概述/
4.1.1TVM量化现状/
4.1.2TVM量化原理/
4.2int8量化与TVM执行/
4.2.1两种主要量化方案/
4.2.2int8量化原理分析/
4.2.3KL散度计算/
4.2.4实现int8量化/
4.3低精度训练与推理/
4.4NN量化/
4.4.1神经网络量化概述/
4.4.2优化数据与网络/
4.4.3前向推理与反向传播/
4.5熵校准示例/
4.6TVM量化流程/
4.6.1Relay的两种并行量化/
4.6.2Relay优化Pass方法/
4.6.3量化处理硬件说明/
4.6.4阈值估计方案/
4.6.5模拟量化误差/
4.6.6尺度计算/
4.6.7数据类型分配/
4.6.8数据类型分配日志/
4.6.9神经网络低精度量化/
4.7TVM量化程序分析/5TVM优化调度/
5.1TVM 运行时系统/
5.1.1TVM 运行时系统框架/
5.1.2PackedFunc编译与部署/
5.1.3构建 PackedFunc模块/
5.1.4远程部署方法/
5.1.5TVM 对象与编译器分析/
5.2自动微分静态图与动态图/
5.2.1计算图分类/
5.2.2动态图实现示例/
5.3机器学习自动微分/
5.3.1微分方法/
5.3.2手动微分/
5.3.3数值微分/
5.3.4符号微分/
5.3.5自动微分/
5.3.6自动微分实现示例/
5.4稀疏矩阵分析/
5.4.1稀疏矩阵概念/
5.4.2稀疏矩阵优化/
5.4.3特定矩阵压缩存储/
5.4.4稀疏矩阵实现示例/
5.5TVM张量计算分析/
5.5.1生成张量运算/
5.5.2嵌套并行与协作/
5.5.3张量化计算/
5.5.4显式内存延迟隐藏/6章 Relay IR/
6.1TVM数据介绍/
6.1.1TVM模块框架介绍/
6.1.2Relay IR原理简介/
6.1.3构建计算图/
6.1.4let绑定与作用域/
6.2IR代码生成/
6.2.1前端优化/
6.2.2节点优化/
6.2.3代数优化/
6.2.4数据流级别的优化/
6.3在Relay中注册算子/
6.3.1添加节点,定义编译参数/
6.3.2运算类型关系分析/
6.3.3C++中进行RELAY_REGISTER_OP宏注册/
6.3.4算子注册与调度/
6.3.5注册函数API分析/
6.3.6将Python API打包/
6.3.7单元测试分析/
6.4TVM中IR示例/
6.4.1IRModule技术分析/
6.4.2TVM Runtime(运行时)分析/
6.4.3预测部署实现/
6.4.4动态图实现/

前言/序言

人工智能(Artificial Intelligence,AI)已经在全世界信息产业中获得广泛应用。深度学习模型推动了AI技术革命,如 TensorFlow、PyTorch、MXNet、Caffe等。大多数现有的系统框架只针对小范围的服务器级 GPU进行过优化,因此需要做很多的优化努力,以便在汽车、手机端、物联网设备及专用加速器(FPGA、ASIC)等其他平台上部署。随着深度学习模型和硬件后端数量的增加,TVM构建了一种基于中间表示 (IR)的统一解决方案。TVM不仅能自动优化深度学习模型,还提供了跨平台的高效开源部署框架。

有了TVM的帮助,只需要很少的定制工作,就可以轻松地在手机、嵌入式设备甚至浏览器上运行深度学习模型。TVM 还为多种硬件平台上的深度学习计算提供了统一的优化框架,包括一些有自主研发计算原语的专用加速器。TVM是一个深度学习编译器,所有人都能随时随地使用开源框架学习研发。围绕TVM形成了多元化社区,社区成员包括硬件供应商、编译器工程师和机器学习研究人员等,共同构建了一个统一的可编程软件堆栈,丰富了整个机器学习技术生态系统。

TVM是一个新型的AI编译器,广泛应用于各种产品研发中,在企业与学术研究中有很大的影响。但是,目前市面上有关TVM的书还很少,本书试图弥补这个空缺。全书的特点总结如下:

第一,从TVM的概念入手,分析了TVM的基本原理和关键支撑技术。

第二,从TVM的环境搭建到案例实践逐步展开,分析如何使用TVM进行实战开发。

第三,介绍了TVM的重要关键技术,如算子与图融合、量化技术、Relay IR(中间表示)、优化调度、编译部署等,分析了这些模块的理论与案例实践。

第四,TVM对后端相关的技术进行了分析与实践,包括代码生成、自动调度、自动搜索与成本模型等。

获取方式

  • 京东图书:《TVM编译器原理与实践》(吴建明,吴一昊)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/312978.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Android系统启动-Zygote详解(Android 14)

一、什么是Zygote 在上一篇文章Android系统启动-init进程详解(Android 14)中,分析了init进程,在init进程启动的第二阶段会解析init.*.rc文件,启动多个进程,其中包括Zygote。 Zygote又叫孵化器&#xff0c…

1、Redis核心数据结构: 魔法般的数据存储之旅

在当今世界的软件开发中,数据的快速、高效存储和检索是至关重要的。而在这个领域,Redis(Remote Dictionary Server)以其强大的性能和多样化的数据结构而脱颖而出。本文将带您深入探讨Redis的核心数据结构,揭示其背后的…

1.12寒假集训

A: 解题思路: 输出整体可以分成两部分: 第一部分循环3*n次,第一部分又可以分成三个部分,分别是*,.,*,分别循环n,2 * n,n次 第二部分循环n次,又可以分成五个部分,.,*,.,*,.,循环i,n(n - i) * 2,n,i次 下…

(1)(1.13) SiK无线电高级配置(六)

文章目录 前言 15 使用FTDI转USB调试线配置SiK无线电设备 16 强制启动加载程序模式 17 名词解释 前言 本文提供 SiK 遥测无线电(SiK Telemetry Radio)的高级配置信息。它面向"高级用户"和希望更好地了解无线电如何运行的用户。 15 使用FTDI转USB调试线配置SiK无线…

国际化翻译系统V2正式上线了

1、前言 之前上线了移动端国际化翻译系统V1版本,其中有一些弊端,例如: 1、项目仅能适用于Android和iOS项目,针对前端项目,Flutter项目,和后端项目无法支持2、之前的桌面程序需要搭建本地java环境才能运行…

【2023年度总结与2024展望】---23年故事不长,且听我来讲

文章目录 前言一、学习方面1.1 攥写博客1.2 学习内容1.3 参加比赛获得证书 二、生活方面2.1写周报记录生活 三、运动方面四、CSDN的鼓励五、24年展望总结 前言 时光飞逝,又是新的一年,遥想去年2023年我也同样在这个时间段参加了CSDN举办的年度总结活动&a…

别再纠结,这8款设计工具助你轻松绘制原型图!

原型图设计工具有很多优点。除了帮助设计师快速与客户达成协议,避免项目前景的冲突外,原型图设计工具还可以让客户看到正在创建的内容。如果需要更改,原型图设计工具也可以轻松完成。本文快速总结了8种原型图设计工具。无论你是专业设计师还是…

如何更改路由器Wi-Fi密码,这里提供通用步骤

这篇文章解释了如何通过路由器的设置更改Wi-Fi密码,即使你不知道当前的密码。 如何更改你的Wi-Fi密码 该过程按照以下一般步骤展开。 ​重要:这些是更改Wi-Fi密码的通用说明。更改路由器设置所需的步骤因不同制造商的路由器而异,甚至可能在…

Python入门0基础学习笔记

1.编程之前 在编写代码之前,还有两件事需要做: 安装 Python 解释器:计算机是没法直接读懂 Python 代码的,需要一个解释器作为中间的翻译,把代码转换成字节码之后再执行。 Python 是翻译一行执行一行。一般说的安装 …

【解决】Unity Project 面板资源显示丢失的异常问题处理

开发平台:Unity 2021.3.7f1c1   一、问题描述 在开发过程中,遭遇 Project 面板资源显示丢失、不全的问题。但 Unity Console 并未发出错误提示。   二、解决方案:删除 Library 目录 前往 “工程目录/Library” 删除内部所有文件并重打开该…

IntelliJ IDEA 如何编译 Maven 工程项目

在当今的Java开发领域,Maven已经成为项目构建和依赖管理的标准工具。IntelliJ IDEA作为一款集成度高的Java开发环境,提供了许多强大的功能来简化和优化Maven项目的构建流程。本文将深入介绍如何使用IntelliJ IDEA编译Maven工程的详细步骤以及一些高级技巧…

用java搞定时任务,将hashmap里面的值存到文件里面去

要实现这个功能,你可以使用Java的Timer和TimerTask类来创建一个定时任务。 首先,你需要创建一个继承自TimerTask的类,重写run方法,将HashMap中的内容写入文本文件。 然后,使用Timer类的schedule方法来设置定时任务的执…

记忆泊车PNC模块架构设计说明书

目 录 0 修订历史......... 2 1. 概要 ............... 5 1.1. 目的 ............... 5 1.2. 参考文档 ......... 5 2. 名词解释 ...... 5 3. 需求概述 ............. 6 3.1. 业务视图 .............. 6 3.2. 功能描述 ............... 6 3.3. 性能指标 ............ 6 3.4. 资…

【软件安全:软件安全技术课后习题及答案】

第一章 1-1 零日漏洞、零日攻击 零日漏洞是指未被公开披露的软件漏洞,没有给软件的作者或厂商以时间去为漏洞打补丁或是给出建议解决方案,从而攻击者能够利用这种漏洞破坏计算机程序、数据及设备。 利用零日漏洞开发攻击工具进行的攻击称为零日攻击。 1-…

Ubuntu server搭建dhcp服务器

安装 直接使用一下命令进行安装 apt-get install isc-dhcp-server 以下就是安装好的图片 然后进入dhcp目录 cd /etc/dhcp 进入后用ls查看当前目录存在哪些文件 使用如下进入dhcp.conf vim dhcpd.conf 红:设置ip域和子网掩码 绿:设置ip池范围 黄…

爬虫利器一览

前言 爬虫(英文:spider),可以理解为简单的机器人,如此一个“不为名利而活,只为数据而生,目标单纯,能量充沛,不怕日晒雨淋,不惧寒冬酷暑”的家伙,…

【深度学习】Anaconda3 + PyCharm 的环境配置 1:手把手带你安装 PyTorch 并创建 PyCharm 项目

前言 文章性质:实操记录 💻 主要内容:这篇文章记录了 PyTorch 的安装过程,包括: 1. 创建并激活新的虚拟环境; 2. 查看电脑是否支持 CUDA 以及 CUDA 的版本; 3. 根据 CUDA 的版本安装 PyTorch&am…

归并排序例题——逆序对的数量

做道简单一点的题巩固一下 归并排序实现步骤 将整个区间 [l, r] 划分为 [l, mid] 和 [mid1, r]。 递归排序 [l, mid] 和 [mid1, r]。 将左右两个有序序列合并为一个有序序列。 题目描述 给定一个长度为 n 的整数数列,请计算数列中的逆序对的数量。 逆序对的定义…

简单的推箱子游戏实战

目录 项目分析 地图初始化 背景图片 游戏场景图片: 热键控制 按键设置 确定人物位置 实现人物移动(非箱子,目的地) 推箱子控制 游戏结束 最终代码 合法性判断: 项目分析 墙:0,地板:1,箱子目的地:2,小人:3,箱子:4,箱子命中目标:5 地图初始化 背景图片 #include <…

煤炭行业电力能源消耗监测管理系统的作用有哪些?

如果说&#xff0c;通风是煤炭的呼吸系统&#xff0c;那么供电就是煤矿的神经系统。安全供电对安全生产有着重要的意义。一旦供电系统出现故障或停电&#xff0c;煤矿的生产活动将无法正常进行&#xff0c;这将产生严重的经济损失甚至危及工人的生命安全。 为了提高煤矿供电系统…