C++力扣题目257--二叉树的所有路径

给你一个二叉树的根节点 root ,按 任意顺序 ,返回所有从根节点到叶子节点的路径。

叶子节点 是指没有子节点的节点。

 

示例 1:

输入:root = [1,2,3,null,5]
输出:["1->2->5","1->3"]

示例 2:

输入:root = [1]
输出:["1"]

思路

这道题目要求从根节点到叶子的路径,所以需要前序遍历,这样才方便让父节点指向孩子节点,找到对应的路径。

在这道题目中将第一次涉及到回溯,因为我们要把路径记录下来,需要回溯来回退一个路径再进入另一个路径。

前序遍历以及回溯的过程如图:

257.二叉树的所有路径

我们先使用递归的方式,来做前序遍历。要知道递归和回溯就是一家的,本题也需要回溯。

#递归

  1. 递归函数参数以及返回值

要传入根节点,记录每一条路径的path,和存放结果集的result,这里递归不需要返回值,代码如下:

void traversal(TreeNode* cur, vector<int>& path, vector<string>& result)

  1. 确定递归终止条件

在写递归的时候都习惯了这么写:

if (cur == NULL) {
    终止处理逻辑
}

但是本题的终止条件这样写会很麻烦,因为本题要找到叶子节点,就开始结束的处理逻辑了(把路径放进result里)。

那么什么时候算是找到了叶子节点? 是当 cur不为空,其左右孩子都为空的时候,就找到叶子节点。

所以本题的终止条件是:

if (cur->left == NULL && cur->right == NULL) {
    终止处理逻辑
}

为什么没有判断cur是否为空呢,因为下面的逻辑可以控制空节点不入循环。

再来看一下终止处理的逻辑。

这里使用vector 结构path来记录路径,所以要把vector 结构的path转为string格式,再把这个string 放进 result里。

那么为什么使用了vector 结构来记录路径呢? 因为在下面处理单层递归逻辑的时候,要做回溯,使用vector方便来做回溯。

可能有的同学问了,我看有些人的代码也没有回溯啊。

其实是有回溯的,只不过隐藏在函数调用时的参数赋值里,下文我还会提到。

这里我们先使用vector结构的path容器来记录路径,那么终止处理逻辑如下:

if (cur->left == NULL && cur->right == NULL) { // 遇到叶子节点
    string sPath;
    for (int i = 0; i < path.size() - 1; i++) { // 将path里记录的路径转为string格式
        sPath += to_string(path[i]);
        sPath += "->";
    }
    sPath += to_string(path[path.size() - 1]); // 记录最后一个节点(叶子节点)
    result.push_back(sPath); // 收集一个路径
    return;
}

  1. 确定单层递归逻辑

因为是前序遍历,需要先处理中间节点,中间节点就是我们要记录路径上的节点,先放进path中。

path.push_back(cur->val);

然后是递归和回溯的过程,上面说过没有判断cur是否为空,那么在这里递归的时候,如果为空就不进行下一层递归了。

所以递归前要加上判断语句,下面要递归的节点是否为空,如下

if (cur->left) {
    traversal(cur->left, path, result);
}
if (cur->right) {
    traversal(cur->right, path, result);
}

此时还没完,递归完,要做回溯啊,因为path 不能一直加入节点,它还要删节点,然后才能加入新的节点。

那么回溯要怎么回溯呢,一些同学会这么写,如下:

if (cur->left) {
    traversal(cur->left, path, result);
}
if (cur->right) {
    traversal(cur->right, path, result);
}
path.pop_back();

这个回溯就有很大的问题,我们知道,回溯和递归是一一对应的,有一个递归,就要有一个回溯,这么写的话相当于把递归和回溯拆开了, 一个在花括号里,一个在花括号外。

所以回溯要和递归永远在一起,世界上最遥远的距离是你在花括号里,而我在花括号外!

那么代码应该这么写:

if (cur->left) {
    traversal(cur->left, path, result);
    path.pop_back(); // 回溯
}
if (cur->right) {
    traversal(cur->right, path, result);
    path.pop_back(); // 回溯
}

那么本题整体代码如下:

// 版本一
class Solution {
private:

    void traversal(TreeNode* cur, vector<int>& path, vector<string>& result) {
        path.push_back(cur->val); // 中,中为什么写在这里,因为最后一个节点也要加入到path中 
        // 这才到了叶子节点
        if (cur->left == NULL && cur->right == NULL) {
            string sPath;
            for (int i = 0; i < path.size() - 1; i++) {
                sPath += to_string(path[i]);
                sPath += "->";
            }
            sPath += to_string(path[path.size() - 1]);
            result.push_back(sPath);
            return;
        }
        if (cur->left) { // 左 
            traversal(cur->left, path, result);
            path.pop_back(); // 回溯
        }
        if (cur->right) { // 右
            traversal(cur->right, path, result);
            path.pop_back(); // 回溯
        }
    }

public:
    vector<string> binaryTreePaths(TreeNode* root) {
        vector<string> result;
        vector<int> path;
        if (root == NULL) return result;
        traversal(root, path, result);
        return result;
    }
};

如上的C++代码充分体现了回溯。

那么如上代码可以精简成如下代码:

class Solution {
private:

    void traversal(TreeNode* cur, string path, vector<string>& result) {
        path += to_string(cur->val); // 中
        if (cur->left == NULL && cur->right == NULL) {
            result.push_back(path);
            return;
        }
        if (cur->left) traversal(cur->left, path + "->", result); // 左
        if (cur->right) traversal(cur->right, path + "->", result); // 右
    }

public:
    vector<string> binaryTreePaths(TreeNode* root) {
        vector<string> result;
        string path;
        if (root == NULL) return result;
        traversal(root, path, result);
        return result;

    }
};

如上代码精简了不少,也隐藏了不少东西。

注意在函数定义的时候void traversal(TreeNode* cur, string path, vector<string>& result) ,定义的是string path,每次都是复制赋值,不用使用引用,否则就无法做到回溯的效果。(这里涉及到C++语法知识)

那么在如上代码中,貌似没有看到回溯的逻辑,其实不然,回溯就隐藏在traversal(cur->left, path + "->", result);中的 path + "->" 每次函数调用完,path依然是没有加上"->" 的,这就是回溯了。

为了把这份精简代码的回溯过程展现出来,大家可以试一试把:

if (cur->left) traversal(cur->left, path + "->", result); // 左  回溯就隐藏在这里

改成如下代码:

path += "->";
traversal(cur->left, path, result); // 左


 

即:

if (cur->left) {
    path += "->";
    traversal(cur->left, path, result); // 左
}
if (cur->right) {
    path += "->";
    traversal(cur->right, path, result); // 右
}

此时就没有回溯了,这个代码就是通过不了的了。

如果想把回溯加上,就要 在上面代码的基础上,加上回溯,就可以AC了。

if (cur->left) {
    path += "->";
    traversal(cur->left, path, result); // 左
    path.pop_back(); // 回溯 '>'
    path.pop_back(); // 回溯 '-'
}
if (cur->right) {
    path += "->";
    traversal(cur->right, path, result); // 右
    path.pop_back(); // 回溯 '>' 
    path.pop_back(); //  回溯 '-' 
}

整体代码如下:

//版本二
class Solution {
private:
    void traversal(TreeNode* cur, string path, vector<string>& result) {
        path += to_string(cur->val); // 中,中为什么写在这里,因为最后一个节点也要加入到path中
        if (cur->left == NULL && cur->right == NULL) {
            result.push_back(path);
            return;
        }
        if (cur->left) {
            path += "->";
            traversal(cur->left, path, result); // 左
            path.pop_back(); // 回溯 '>'
            path.pop_back(); // 回溯 '-'
        }
        if (cur->right) {
            path += "->";
            traversal(cur->right, path, result); // 右
            path.pop_back(); // 回溯'>'
            path.pop_back(); // 回溯 '-'
        }
    }

public:
    vector<string> binaryTreePaths(TreeNode* root) {
        vector<string> result;
        string path;
        if (root == NULL) return result;
        traversal(root, path, result);
        return result;

    }
};

大家应该可以感受出来,如果把 path + "->"作为函数参数就是可以的,因为并没有改变path的数值,执行完递归函数之后,path依然是之前的数值(相当于回溯了)

综合以上,第二种递归的代码虽然精简但把很多重要的点隐藏在了代码细节里,第一种递归写法虽然代码多一些,但是把每一个逻辑处理都完整的展现出来了。

#拓展

这里讲解本题解的写法逻辑以及一些更具体的细节,下面的讲解中,涉及到C++语法特性,如果不是C++的录友,就可以不看了,避免越看越晕。

如果是C++的录友,建议本题独立刷过两遍,再看下面的讲解,同样避免越看越晕,造成不必要的负担。

在第二版本的代码中,其实仅仅是回溯了 -> 部分(调用两次pop_back,一个pop> 一次pop-),大家应该疑惑那么 path += to_string(cur->val); 这一步为什么没有回溯呢? 一条路径能持续加节点 不做回溯吗?

其实关键还在于 参数,使用的是 string path,这里并没有加上引用& ,即本层递归中,path + 该节点数值,但该层递归结束,上一层path的数值并不会受到任何影响。 如图所示:

节点4 的path,在遍历到节点3,path+3,遍历节点3的递归结束之后,返回节点4(回溯的过程),path并不会把3加上。

所以这是参数中,不带引用,不做地址拷贝,只做内容拷贝的效果。(这里涉及到C++引用方面的知识)

在第一个版本中,函数参数我就使用了引用,即 vector<int>& path ,这是会拷贝地址的,所以 本层递归逻辑如果有path.push_back(cur->val); 就一定要有对应的 path.pop_back()

那有同学可能想,为什么不去定义一个 string& path 这样的函数参数呢,然后也可能在递归函数中展现回溯的过程,但关键在于,path += to_string(cur->val); 每次是加上一个数字,这个数字如果是个位数,那好说,就调用一次path.pop_back(),但如果是 十位数,百位数,千位数呢? 百位数就要调用三次path.pop_back(),才能实现对应的回溯操作,这样代码实现就太冗余了。

所以,第一个代码版本中,我才使用 vector 类型的path,这样方便给大家演示代码中回溯的操作。 vector类型的path,不管 每次 路径收集的数字是几位数,总之一定是int,所以就一次 pop_back就可以。

#迭代法

至于非递归的方式,我们可以依然可以使用前序遍历的迭代方式来模拟遍历路径的过程,对该迭代方式不了解的同学,可以看文章二叉树:听说递归能做的,栈也能做! (opens new window)和二叉树:前中后序迭代方式统一写法 (opens new window)。

这里除了模拟递归需要一个栈,同时还需要一个栈来存放对应的遍历路径。

C++代码如下:

class Solution {
public:
    vector<string> binaryTreePaths(TreeNode* root) {
        stack<TreeNode*> treeSt;// 保存树的遍历节点
        stack<string> pathSt;   // 保存遍历路径的节点
        vector<string> result;  // 保存最终路径集合
        if (root == NULL) return result;
        treeSt.push(root);
        pathSt.push(to_string(root->val));
        while (!treeSt.empty()) {
            TreeNode* node = treeSt.top(); treeSt.pop(); // 取出节点 中
            string path = pathSt.top();pathSt.pop();    // 取出该节点对应的路径
            if (node->left == NULL && node->right == NULL) { // 遇到叶子节点
                result.push_back(path);
            }
            if (node->right) { // 右
                treeSt.push(node->right);
                pathSt.push(path + "->" + to_string(node->right->val));
            }
            if (node->left) { // 左
                treeSt.push(node->left);
                pathSt.push(path + "->" + to_string(node->left->val));
            }
        }
        return result;
    }
};

当然,使用java的同学,可以直接定义一个成员变量为object的栈Stack<Object> stack = new Stack<>();,这样就不用定义两个栈了,都放到一个栈里就可以了。

#总结

本文我们开始初步涉及到了回溯,很多同学过了这道题目,可能都不知道自己其实使用了回溯,回溯和递归都是相伴相生的。

我在第一版递归代码中,把递归与回溯的细节都充分的展现了出来,大家可以自己感受一下。

第二版递归代码对于初学者其实非常不友好,代码看上去简单,但是隐藏细节于无形。

最后我依然给出了迭代法。

对于本题充分了解递归与回溯的过程之后,有精力的同学可以再去实现迭代法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/311146.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何进行大数据系统测试

大数据系统常见的架构形式有如下几种&#xff1a; Hadoop架构&#xff1a; Hadoop Distributed File System (HDFS)&#xff1a;这是一种分布式文件系统&#xff0c;设计用于存储海量数据并允许跨多台机器进行高效访问。 MapReduce&#xff1a;作为Hadoop的核心计算框架&#…

1.5 Unity中的数据存储 PlayerPrefs

Unity中的三种数据存储&#xff1a;数据存储也称为数据持久化 一、PlayerPrefs PlayerPrefs是Unity引擎自身提供的一个用于本地持久化保存与读取的类&#xff0c;以键值对的形式将数据保存在文件中&#xff0c;然后程序可以根据关键字提取数值。 PlayerPrefs类支持3种数据类…

php中常用的几个安全函数

1. mysql_real_escape_string() 这个函数对于在PHP中防止SQL注入攻击很有帮助&#xff0c;它对特殊的字符&#xff0c;像单引号和双引号&#xff0c;加上了“反斜杠”&#xff0c;确保用户的输入在用它去查询以前已经是安全的了。但你要注意你是在连接着数据库的情况下使用这个…

UG装配-动态干涉检查

如果设计的产品有运动部件&#xff0c;除了做静态干涉检查外&#xff0c;通常还要做动态干涉检查 动态检查可以使用如下命令&#xff1a;移动组件&#xff0c;序列 在动态干涉检查前&#xff0c;先装配好组件&#xff0c;并且是可运动状态 在使用移动组件命令对运动部件进行…

DePIN:重塑物理资源网络的未来

点击查看TechubNews更多相关推荐 一、DePIN&#xff1a;物理资源的新整合方式 Depin赛道的项目如雨后春笋般涌现&#xff0c;为市场注入了新的活力。作为先行者&#xff0c;Coinmanlabs已经深入布局Depin赛道&#xff0c;其中最引人注目的项目当属Grass。 什么是DePIN DePIN…

Flashduty 案例分享 - 途游游戏

Flashduty 作为功能完备的事件OnCall中心&#xff0c;可以接入云上、云下不同监控系统&#xff0c;统一做告警降噪分派、认领升级、排班协同&#xff0c;已经得到众多先进企业的认可。我们采访了一些典型客户代表&#xff0c;了解他们的痛点、选型考虑和未来展望&#xff0c;集…

第一个动态结构:链表

王有志&#xff0c;一个分享硬核Java技术的互金摸鱼侠加入Java人的提桶跑路群&#xff1a;共同富裕的Java人 今天我们一起学习线性表中的第二种数据结构&#xff1a;链表&#xff0c;也是真正意义上的第一个动态数据结构。今天的内容分为3个部分&#xff1a;认识链表&#xff0…

IIS+SDK+VS2010+SP1+SQL server2012全套工具包及安装教程

前言 今天花了两个半小时安装这一整套配置&#xff0c;这个文章的目标是将安装时间缩短到1个小时 正文 安装步骤如下&#xff1a; VS2010 —> service pack 1 —>SQL server2012 —> IIS —> SDK 工具包链接如下&#xff1a; https://pan.baidu.com/s/1WQD-KfiUW…

微软开源时空预测Fost的使用和解读

一、引言 时空预测是指对未知系统状态在时间和空间上的预测&#xff0c;它是地球系统科学、交通运输、智慧城市等领域的重要技术和工具。时空预测的目的是利用历史数据和当前信息&#xff0c;通过建立时空依赖关系&#xff0c;来推断未来的变化趋势和可能的情景。时空预测的应…

Hive数据库:嵌入、本地、远程全攻略(上)

Hive分布式数据仓库工具 关系型数据库 建立在关系模型之上的数据库称为关系型数据库(关系模型是由埃德加科德于1970年提出的)&#xff0c;关系型数据库借助集合代数等数学概念处理数据库中的数据。数据查询语言SOL是基于关系型数据库的语言,能够对关系型数据库中的数据进行检…

单摆波运动

1、简介 单摆波运动通常由15个单摆小球完成&#xff0c;每个小球的线长不一致&#xff0c;线长从一端至另一端依次增长。线长不一致会导致运动周期不一致&#xff0c;故而单摆波运动中的每个小球运动都不同&#xff0c;且能在规则与不规则运动间转换。单摆波运动如下所示&…

Qt QComboBox组合框控件

文章目录 1 属性和方法1.1 文本1.2 图标1.3 插入和删除1.4 信号和槽 2 实例2.1 布局2.2 代码实现 Qt中的组合框是集按钮和下拉列表体的控件&#xff0c;&#xff0c;它占用的屏幕空间很小&#xff0c;对应的类是QComboBox 1 属性和方法 QComboBox有很多属性&#xff0c;完整的…

力扣hot100 路径总和Ⅲ dfs 前缀和 一题双解 超全注释

Problem: 437. 路径总和 III 思路 树的遍历 DFS 一个朴素的做法是搜索以每个节点为根的&#xff08;往下的&#xff09;所有路径&#xff0c;并对路径总和为 targetSumtargetSumtargetSum 的路径进行累加统计。 使用 dfs1 来搜索所有节点&#xff0c;复杂度为 O(n)O(n)O(n)&am…

【计算机网络】TCP原理 | 可靠性机制分析(三)

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【网络编程】【Java系列】 本专栏旨在分享学习网络编程、计算机网络的一点学习心得&#xff0c;欢迎大家在评论区交流讨论&#x1f48c; 目…

数据结构第十二弹---堆的应用

堆的应用 1、堆排序2、TopK问题3、堆的相关习题总结 1、堆排序 要学习堆排序&#xff0c;首先要学习堆的向下调整算法&#xff0c;因为要用堆排序&#xff0c;你首先得建堆&#xff0c;而建堆需要执行多次堆的向下调整算法。 但是&#xff0c;使用向下调整算法需要满足一个前提…

全网最细RocketMQ源码一:NameSrv

一、入口 NameServer的启动源码在NameStartup&#xff0c;现在开始debug之旅 二、createNamesrcController public static NamesrvController createNamesrvController(String[] args) throws IOException, JoranException {System.setProperty(RemotingCommand.REMOTING_VER…

Java中多线程二

抢占调度模型 概述&#xff1a;优先让优先级高的线程使用 CPU &#xff0c;如果线程的优先级相同&#xff0c;那么随机会选择一个&#xff0c;优先级高的线程获取的 CPU 时间片相对多一些 Thread 类中一些关于线程的方法 方法简述public final int getPriority()返回此线程的优…

五、Java中SpringBoot组件集成接入【slf4j日志文档】

五、Java中SpringBoot组件集成接入【slf4j日志文档】 1.slf4j简介2.maven依赖3.配置4.使用5.展示6.参考文章 1.slf4j简介 SLF4J&#xff08;Simple Logging Facade for Java&#xff09;是一个为Java应用程序提供统一日志接口的日志门面框架。它旨在解决Java应用程序中日志系统…

居中面试问题

前端常问居中面试问题 css文本居中 文本水平居中 <div class"father"><div class"child"><div> <div>子类元素为行内元素&#xff0c;则给父类元素定义text-align:center 如果子元素是块元素&#xff0c;则给子元素定义margin&…

Vue3快速入门

文章目录 1. Vue3简介1.1. 【性能的提升】1.2. 源码的升级】1.3. 【拥抱TypeScript】1.4. 【新的特性】 2. 创建Vue3工程2.1. 【基于 vue-cli 创建】2.2. 【基于 vite 创建】(推荐)2.3. 【一个简单的效果】 3. Vue3核心语法3.1. 【OptionsAPI 与 CompositionAPI】Options API 的…