C++ λ表达式

λ表达式提供了函数对象的另一种编程机制。


在 C++ 11 和更高版本中,Lambda 表达式(通常称为 Lambda)是一种在被调用的位置或作为参数传递给函数的位置定义匿名函数对象(闭包)的简便方法。 Lambda 通常用于封装传递给算法或异步函数的少量代码行。

λ表达式

#include <algorithm>
#include <cmath>

void abssort(float* x, unsigned n) {
    std::sort(x, x + n,
        // Lambda expression begins
        [](float a, float b) {
            return (std::abs(a) < std::abs(b));
        } // end of lambda expression
    );
}

  1. capture 子句(在 C++ 规范中也称为 Lambda 引导。)

  2. 参数列表(可选)。 (也称为 Lambda 声明符)

  3. mutable 规范(可选)。

  4. exception-specification(可选)。

  5. trailing-return-type(可选)。

  6. Lambda 体。

capture子句

Lambda 可在其主体中引入新的变量(用 C++14),它还可以访问(或“捕获”)周边范围内的变量。 Lambda 以 capture 子句开头。 它指定捕获哪些变量,以及捕获是通过值还是通过引用进行的。 有与号 (&) 前缀的变量通过引用进行访问,没有该前缀的变量通过值进行访问。

空 capture 子句 [ ] 指示 lambda 表达式的主体不访问封闭范围中的变量。

可以使用默认捕获模式来指示如何捕获 Lambda 体中引用的任何外部变量:[&] 表示通过引用捕获引用的所有变量,而 [=] 表示通过值捕获它们。 可以使用默认捕获模式,然后为特定变量显式指定相反的模式。

 例如,如果 lambda 体通过引用访问外部变量 total 并通过值访问外部变量 factor,则以下 capture 子句等效:

[&total, factor]
[factor, &total]
[&, factor]
[=, &total]

如果 capture 子句包含默认捕获 &,则该 capture 子句的捕获中没有任何标识符可采用 &identifier 形式。 同样,如果 capture 子句包含默认捕获 =,则该 capture 子句没有任何捕获可采用 =identifier 形式。 标识符或 this 在 capture 子句中出现的次数不能超过一次。 以下代码片段给出了一些示例:

struct S { void f(int i); };

void S::f(int i) {
    [&, i]{};      // OK
    [&, &i]{};     // ERROR: i preceded by & when & is the default
    [=, this]{};   // ERROR: this when = is the default
    [=, *this]{ }; // OK: captures this by value. See below.
    [i, i]{};      // ERROR: i repeated
}

捕获后跟省略号是一个包扩展,如以下可变参数模板示例中所示:

template<class... Args>
void f(Args... args) {
    auto x = [args...] { return g(args...); };
    x();
}

 要在类成员函数体中使用 Lambda 表达式,请将 this 指针传递给 capture 子句,以提供对封闭类的成员函数和数据成员的访问权限。

在使用 capture 子句时,建议你记住以下几点(尤其是使用采取多线程的 Lambda 时):

  • 引用捕获可用于修改外部变量,而值捕获却不能实现此操作。 (mutable 允许修改副本,而不能修改原始项。)

  • 引用捕获会反映外部变量的更新,而值捕获不会。

  • 引用捕获引入生存期依赖项,而值捕获却没有生存期依赖项。 当 Lambda 以异步方式运行时,这一点尤其重要。 如果在异步 Lambda 中通过引用捕获局部变量,该局部变量将很容易在 Lambda 运行时消失。 代码可能会导致在运行时发生访问冲突。

捕获特定的变量

在 C++14 中,可在 Capture 子句中引入并初始化新的变量,而无需使这些变量存在于 Lambda 函数的封闭范围内。 初始化可以任何任意表达式表示;且将从该表达式生成的类型推导新变量的类型。 借助此功能,你可以从周边范围捕获只移动的变量(例如 std::unique_ptr)并在 Lambda 中使用它们。

pNums = make_unique<vector<int>>(nums);
//...
      auto a = [ptr = move(pNums)]()
        {
           // use ptr
        };

参数列表

Lambda 既可以捕获变量,也可以接受输入参数。 参数列表(在标准语法中称为 Lambda 声明符)是可选的,它在大多数方面类似于函数的参数列表。

auto y = [] (int first, int second)
{
    return first + second;
};

在 C++14 中,如果参数类型是泛型,则可以使用 auto 关键字作为类型说明符。 此关键字将告知编译器将函数调用运算符创建为模板。 参数列表中的每个 auto 实例等效于一个不同的类型参数。

在 C++14 中,如果参数类型是泛型,则可以使用 auto 关键字作为类型说明符。 此关键字将告知编译器将函数调用运算符创建为模板。 参数列表中的每个 auto 实例等效于一个不同的类型参数。

 Lambda 表达式可以将另一个 Lambda 表达式作为其自变量。 有关详细信息,请参阅 Lambda 表达式示例一文中的“高阶 Lambda 表达式”。

由于参数列表是可选的,因此在不将自变量传递到 Lambda 表达式,并且其 Lambda 声明符不包含 exception-specification、trailing-return-type 或 mutable 的情况下,可以省略空括号。

mutable 规范

通常,Lambda 的函数调用运算符是 const-by-value,但对 mutable 关键字的使用可将其取消。它不产生 mutable 数据成员。 利用 mutable 规范,Lambda 表达式的主体可以修改通过值捕获的变量。 本文后面的一些示例将展示如何使用 mutable

异常规范

// throw_lambda_expression.cpp
// compile with: /W4 /EHsc
int main() // C4297 expected
{
   []() noexcept { throw 5; }();
}

 有关详细信息,请参阅异常规范 (throw)。

返回类型

将自动推导 Lambda 表达式的返回类型。 无需使用 auto 关键字,除非指定了 trailing-return-type。 trailing-return-type 类似于普通函数或成员函数的 return-type 部分。 但是,返回类型必须跟在参数列表的后面,你必须在返回类型前面包含 trailing-return-type 关键字 ->

如果 Lambda 体仅包含一个返回语句,则可以省略 Lambda 表达式的 return-type 部分。 或者,在表达式未返回值的情况下。 如果 lambda 体包含单个返回语句,编译器将从返回表达式的类型推导返回类型。 否则,编译器会将返回类型推导为 void。 下面的示例代码片段说明了这一原则:

auto x1 = [](int i){ return i; }; // OK: return type is int
auto x2 = []{ return{ 1, 2 }; };  // ERROR: return type is void, deducing
                                  // return type from braced-init-list isn't valid

 lambda 表达式可以生成另一个 lambda 表达式作为其返回值。 有关详细信息,请参阅 Lambda 表达式示例中的“高阶 Lambda 表达式”。

Lambda 体

Lambda 表达式的 Lambda 体是一个复合语句。 它可以包含普通函数或成员函数体中允许的任何内容。 普通函数和 lambda 表达式的主体均可访问以下变量类型:

  • 从封闭范围捕获变量,如前所述。

  • 参数。

  • 本地声明变量。

  • 类数据成员(在类内部声明并且捕获 this 时)。

  • 具有静态存储持续时间的任何变量(例如,全局变量)。

以下示例包含通过值显式捕获变量 n 并通过引用隐式捕获变量 m 的 lambda 表达式:

// captures_lambda_expression.cpp
// compile with: /W4 /EHsc
#include <iostream>
using namespace std;

int main()
{
   int m = 0;
   int n = 0;
   [&, n] (int a) mutable { m = ++n + a; }(4);
   cout << m << endl << n << endl;
}

output
5
0

 由于变量 n 是通过值捕获的,因此在调用 lambda 表达式后,变量的值仍保持 0 不变。 mutable 规范允许在 Lambda 中修改 n

Lambda 表达式只能捕获具有自动存储持续时间的变量。 但是,可以在 Lambda 表达式体中使用具有静态持续存储时间的变量。 以下示例使用 generate 函数和 lambda 表达式为 vector 对象中的每个元素赋值。 lambda 表达式将修改静态变量以生成下一个元素的值。

void fillVector(vector<int>& v)
{
    // A local static variable.
    static int nextValue = 1;

    // The lambda expression that appears in the following call to
    // the generate function modifies and uses the local static
    // variable nextValue.
    generate(v.begin(), v.end(), [] { return nextValue++; });
    //WARNING: this isn't thread-safe and is shown for illustration only
}

模板和λ表达式

命名λ表达式

下面的代码示例使用上一示例中的函数,并添加了使用 C++ 标准库算法 generate_n 的 Lambda 表达式的示例。 该 lambda 表达式将 vector 对象的元素指派给前两个元素之和。 使用了 mutable 关键字,使 Lambda 表达式主体可以修改 Lambda 表达式通过值捕获的外部变量 x 和 y 的副本。 由于 lambda 表达式通过值捕获原始变量 x 和 y,因此它们的值在 lambda 执行后仍为 1

// compile with: /W4 /EHsc
#include <algorithm>
#include <iostream>
#include <vector>
#include <string>

using namespace std;

template <typename C> void print(const string& s, const C& c) {
    cout << s;

    for (const auto& e : c) {
        cout << e << " ";
    }

    cout << endl;
}

void fillVector(vector<int>& v)
{
    // A local static variable.
    static int nextValue = 1;

    // The lambda expression that appears in the following call to
    // the generate function modifies and uses the local static
    // variable nextValue.
    generate(v.begin(), v.end(), [] { return nextValue++; });
    //WARNING: this isn't thread-safe and is shown for illustration only
}

int main()
{
    // The number of elements in the vector.
    const int elementCount = 9;

    // Create a vector object with each element set to 1.
    vector<int> v(elementCount, 1);

    // These variables hold the previous two elements of the vector.
    int x = 1;
    int y = 1;

    // Sets each element in the vector to the sum of the
    // previous two elements.
    generate_n(v.begin() + 2,
        elementCount - 2,
        [=]() mutable throw() -> int { // lambda is the 3rd parameter
        // Generate current value.
        int n = x + y;
        // Update previous two values.
        x = y;
        y = n;
        return n;
    });
    print("vector v after call to generate_n() with lambda: ", v);

    // Print the local variables x and y.
    // The values of x and y hold their initial values because
    // they are captured by value.
    cout << "x: " << x << " y: " << y << endl;

    // Fill the vector with a sequence of numbers
    fillVector(v);
    print("vector v after 1st call to fillVector(): ", v);
    // Fill the vector with the next sequence of numbers
    fillVector(v);
    print("vector v after 2nd call to fillVector(): ", v);
}

output
vector v after call to generate_n() with lambda: 1 1 2 3 5 8 13 21 34
x: 1 y: 1
vector v after 1st call to fillVector(): 1 2 3 4 5 6 7 8 9
vector v after 2nd call to fillVector(): 10 11 12 13 14 15 16 17 18

constexpr Lambda 表达式

Visual Studio 2017 版本 15.3 及更高版本(在 /std:c++17 模式和更高版本中可用):在常量表达式中允许初始化捕获或引入的每个数据成员时,可以将 Lambda 表达式声明为 constexpr(或在常量表达式中使用它)。

int y = 32;
    auto answer = [y]() constexpr
    {
        int x = 10;
        return y + x;
    };

    constexpr int Increment(int n)
    {
        return [n] { return n + 1; }();
    }

如果 Lambda 结果满足 constexpr 函数的要求,则 Lambda 是隐式的 constexpr

auto answer = [](int n)
    {
        return 32 + n;
    };

    constexpr int response = answer(10);

 如果 Lambda 是隐式或显式的 constexpr,则转换为函数指针将生成 constexpr 函数:

auto Increment = [](int n)
    {
        return n + 1;
    };

    constexpr int(*inc)(int) = Increment;

Microsoft 专用

以下公共语言运行时 (CLR) 托管实体中不支持 Lambda:ref classref structvalue class 或 value struct

如果你使用 Microsoft 专用的修饰符(例如 __declspec),可以紧接在 parameter-declaration-clause 后将其插入 Lambda 表达式。 例如:

auto Sqr = [](int t) __declspec(code_seg("PagedMem")) -> int { return t*t; };

若要确定 Lambda 是否支持某个特定修饰符,请参阅 Microsoft 专用修饰符一文中有关该修饰符的部分。

Visual Studio 支持 C++11 标准 Lambda 功能和无状态 Lambda。 无状态 Lambda 可转换为使用任意调用约定的函数指针。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/311081.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

LLVM的安装步骤实战

目录 1. 准备环境 1.1 安装必备软件包 1.2 配置Git 2. 用CMake构建 2.1 克隆代码库 2.2 创建构建目录 2.3 生成构建系统文件 3. 自定义构建 3.1 CMake定义的变量 3.2 LLVM定义的变量 4. 总结 1. 准备环境 首先操作系统可以是Linux、FreeBSD、macOS或Windows。 同…

Python基础(二十四、JSON和pyecharts)

文章目录 一、JSON1.JSON介绍2.JSON格式数据转化3.示例 二、pyecharts1.安装pyecharts包2.查看官方示例 三、开发示例 一、JSON 1.JSON介绍 JSON是一种轻量级的数据交互格式&#xff0c;采用完全独立于编程语言的文本格式来存储和表示数据&#xff08;就是字符串&#xff09;…

邻接矩阵、可达性矩阵、完全关联矩阵、可达性矩阵的计算

邻接矩阵&#xff1a;很简单&#xff0c;就是两个点有关系就是1&#xff0c;没有关系就是0 可达性矩阵&#xff1a;非常简单&#xff0c;两点之间有路为1&#xff0c;没有路为0 可发行矩阵的计算&#xff1a;有n个元素&#xff0c;初始可达性矩阵为A&#xff0c;那么最终的矩阵…

实战环境搭建-linux下安装tomcat

安装tomcat Index of /dist/tomcat/tomcat-9/v9.0.8/bin 下载apache-tomcat-9.0.8.tar.gz&#xff0c;可以使用wget; 2、将压缩包tar -zxvf apache-tomcat-9.0.8.tar.gz解压到/home/tomcat 3、修改环境变量 vi /etc/profile export JAVA_HOME/home/java/jdk1.8.0_221 expo…

C++ 深度优先搜索DFS || 模版题:排列数字

给定一个整数 n &#xff0c;将数字 1∼n 排成一排&#xff0c;将会有很多种排列方法。 现在&#xff0c;请你按照字典序将所有的排列方法输出。 输入格式 共一行&#xff0c;包含一个整数 n 。 输出格式 按字典序输出所有排列方案&#xff0c;每个方案占一行。 数据范围 1…

力扣热题 100

文章目录 哈希双指针滑动窗口子串普通数组矩阵链表二叉树图论回溯二分查找栈堆贪心算法动态规划多维动态规划技巧 哈希 双指针 移动零 class Solution {public void moveZeroes(int[] nums) {int k 0;for(int i 0;i < nums.length; i){if(nums[i] ! 0) {nums[k] nums[…

行为型设计模式——策略模式

策略模式 策略模式非常简单&#xff0c;只需要将策略或者某个算法定义成一个类&#xff0c;然后传给需要使用的对象即可。**定义&#xff1a;**该模式定义了一系列算法&#xff0c;并将每个算法封装起来&#xff0c;使它们可以相互替换&#xff0c;且算法的变化不会影响使用算…

【ITK库学习】使用itk库进行图像分割(四):水平集分割

目录 1、水平集2、itkFastMarchingImageFilter 快速步进分割3、itkShapeDetectionLevelSetImageFilter 快速步进分割 1、水平集 水平集是跟踪轮廓和表面运动的一种数字化方法。基于图像的亮度均值、梯度、边缘特征的微分计算&#xff0c;进行水平集分割。在itk中&#xff0c;所…

1.10 Unity中的数据存储 JSON

一、介绍 Json是最常用也是目前用的比较多的一种&#xff0c;超轻量级&#xff0c;可便捷性使用&#xff0c;平时用到比较多的都是解析Json和往Json中添加数据、修改数据等等JSON(JavaScript Object Notation,JS对象标记)是一种轻量级的数据交换格式&#xff0c;它基于ECMAScr…

git 使用 submodule 如何指定分支

写在前面, 作为一个前端我是不喜欢使用 submodule的, 我更喜欢 npm 包的管理方式。 首次添加子模块 git submodule add -b <branch> <remote> <path> 不指定分支就不传 -b <branch> <branch> 分支名<remote> 仓库地址<path> 子模块…

Unity中URP下抓屏的 开启 和 使用

文章目录 前言一、抓屏开启1、Unity下开启抓屏2、Shader中开启抓屏 二、抓屏使用1、设置为半透明渲染队列&#xff0c;关闭深度写入2、申明纹理和采样器3、在片元着色器使用请添加图片描述 三、测试代码 前言 我们在这篇文章中看一下&#xff0c;URP下怎么开启抓屏。 一、抓屏…

兴业证券分布式数据库云应用实践

数据库技术作为信息技术应用创新过程中的一项重要技术&#xff0c;其面临的难题也是亟需解决的关键问题。兴业证券在《集团五年金融科技规划》中提出&#xff0c;要以信息技术应用创新架构评审为抓手&#xff0c;制定信息技术应用创新规划和建设方案&#xff0c;以高可用性、开…

LeetCode+ 56 - 60

合并区间 双指针算法、位运算、离散化、区间合并_小雪菜本菜的博客-CSDN博客 class Solution { public:vector<vector<int>> merge(vector<vector<int>>& a) {vector<vector<int>> res;if(a.empty()) return res;sort(a.begin(),a.en…

10款强大的iPhone微信恢复软件:轻松恢复丢失的微信数据

微信已成为近年来最受欢迎的消息和社交媒体平台之一。它在全球拥有数百万用户&#xff0c;让人们能够联系、分享时刻并进行各种交易。随着微信的普及&#xff0c;对全面恢复解决方案的需求从未如此之大。本文探讨了专为 iPhone 用户设计的十款顶级微信恢复软件选项。每个软件都…

别不信,搭建企业知识库后真的效率翻倍了

在当今信息时代&#xff0c;知识是最宝贵的财富。一个企业要想越办越大&#xff0c;就需要保证信息的透明度和流通率。而搭建一套企业知识库&#xff0c;就能实现这个目标。今天我们就来聊聊为什么建立企业知识库后&#xff0c;你的工作效率会大大提高。同时&#xff0c;我们会…

智慧医院之定位导航解决方案

移动端LBS应用 通过绘制院方各楼栋各层平面图,利用无线/蓝牙技术可对终端进行实时定位,方便病人、家属等就医,提高就医体验,减少工作人员工作量,减少医患冲突,打造智慧医院。 移动端的LBS位置应用,可分为医院的室内地图展现、室内地图搜索、室内导航、室内定位、室内位…

x-cmd pkg | agg - asciinema gif 生成器

目录 简介首次用户功能特点竞品和相关作品进一步阅读 简介 由 asciinema 团队开发的 asciinema gif 生成器&#xff0c;用于将 asciinema 生成的 asciicast 文件转化为 GIF 文件&#xff0c;具有精确的帧定时&#xff0c;且支持指定字体和颜色主题&#xff0c;能生成更为精美的…

JavaScript系列——闭包

文章目录 闭包定义词法作用域闭包示例使用场景创建私有变量ES5 中&#xff0c;解决循环变量的作用域问题 小结 闭包定义 闭包&#xff0c;是函数及其关联的周边环境的引用的组合&#xff0c;在闭包里面&#xff0c;内部函数可以访问外部函数的作用域&#xff0c;而外部函数不能…

江山易改本性难移之ZYNQ SDK QSPI固化bug及其解决方法

之前在Vivado2018.3通过QSPI方式固化程序时出现问题&#xff0c;显示flash擦除成功&#xff0c;但最后总是不能写入到flash中。 查资料发现从VIVADO 2017.3版本开始&#xff0c;Xilinx官方为了使Zynq-7000和Zynq UltraScale 实现流程相同&#xff0c;在QSPI FLASH使用上做了变化…

【数模百科】一篇文章讲清楚层次分析法的原理和解法步骤

本文节选自 层次分析法原理 - 数模百科&#xff0c;如果你想了解更多关于层次分析法的信息&#xff0c;请移步数模百科。 层次分析法&#xff08;Analytic Hierarchy Process&#xff0c;简称AHP&#xff09;是一种解决复杂决策问题的方法。这个方法是由美国运筹学家托马斯萨蒂…