Pytorch数据类型Tensor张量操作(操作比较全)

文章目录

  • Pytorch数据类型Tensor张量操作
    • 一.创建张量的方式
      • 1.创建无初始化张量
      • 2.创建随机张量
      • 3.创建初值为指定数值的张量
      • 4.从数据创建张量
      • 5.生成等差数列张量
    • 二.改变张量形状
    • 三.索引
    • 四.维度变换
      • 1.维度增加unsqueeze
      • 2.维度扩展expand
      • 3.维度减少squeeze
      • 4.维度扩展repeat
    • 五.维度交换
      • 1.简单的二维转置函数t:
      • 2.交换任意两个维度transpose
      • 3.重新排列原来的维度顺序permute
    • 六.张量合并
      • 1.cat操作
      • 2.stack操作
    • 七.张量的分割
      • 1.split操作
      • 2.chunk操作

Pytorch数据类型Tensor张量操作

本文只简单介绍pytorch中的对于张量的各种操作,主要列举介绍其大致用法和简单demo。后续更为详细的介绍会进行补充…

一.创建张量的方式

1.创建无初始化张量

  • torch.empty(3, 4) 创建未初始化内存的张量

2.创建随机张量

  • x = torch.rand(3, 4) 服从0~1间均匀分布
  • x = torch.randn(3, 4) 服从(0,1)的正态分布
  • x = torch.rand_like(y) 以rand方式随机创建一个和y形状相同的张量
  • x = torch.randint(1, 10, [3, 3]) 创建元素介于[1,10)的形状为(3,3)的随机张量

3.创建初值为指定数值的张量

  • x = torch.zeros(3, 4) 生成形状为(3,4)的初值全为0的张量
  • x = torch.full([3, 4], 6) 生成形状为(3,4)的初值全为6的张量
  • x = torch.eye(5, 5) 生成形状为(5,5)的单位阵

4.从数据创建张量

  • x = torch.tensor([1, 2, 3, 4, 5, 6]) 接收数据

  • torch.Tensor(3, 4) 接收tensor的维度

5.生成等差数列张量

  • x = torch.arange(0, 10) 生成[0,10)公差为1的等差数列张量
  • x = torch.arange(0, 10, 3) 生成[0,10)公差为3的等差数列张量

二.改变张量形状

view()与reshape()方法功能用法完全一致
通过传入改变后每一个维度的大小来重塑张量的形状:

x = x.view(2, 3)
x = x.reshape(2, 3)

view和reshape操作的示例:

a = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8])
b = a.reshape(2, 4)
c = a.view(2, 4)
print(b)
print(c)

在这里插入图片描述

三.索引

y = x.index_select(0, torch.tensor([0, 2]))
第一个参数表示选择的维度,第二个参数以tensor的形式传入,选择该维度中的指定索引index

x = torch.tensor([
    [1, 2, 3, 4],
    [5, 6, 7, 8],
    [9, 10, 11, 12],
])
y = x.index_select(0, torch.tensor([0, 2]))
print(y)
y = x.index_select(1, torch.tensor([1, 2]))
print(y)

在这里插入图片描述
根据掩码获得打平后的指定索引张量:

mask = x.ge(5)
y = torch.masked_select(x, mask)

通过比较运算获得一个mask索引,然后将mask索引传入masked_select方法来获得打平后的新张量,具体示例如下:

x = torch.tensor([
    [1, 2, 0, 2],
    [3, 6, 1, 9],
    [-1, 7, -8, 1],
])
mask = x.ge(5)
y = torch.masked_select(x, mask)
print(y)
mask = x.gt(0)
y = torch.masked_select(x, mask)
print(y)
mask = x.lt(1)
y = torch.masked_select(x, mask)
print(y)

在这里插入图片描述

四.维度变换

1.维度增加unsqueeze

unsqueeze操作可以让张量在指定非负维度前插入新的维度,在负维度后插入新的维度,传入参数n表示指定的维度,即n若大于等于0则在n前插入新的维度,若n小于0则在n后插入新的维度:

x.unsqueeze(n)

假设原张量x的shape为(4,3,28,28),使用x.unsqueeze(0) 在0维度前插入新的维度后,张量的shape变为(1,4,3,28,28)。原张量y的shape为(2),使用y.unsqueeze(1)在维度1前插入新的维度后,张量的shape变为(2,1)。代码示例如下:

x = torch.randint(1, 10, [4, 3, 28, 28])
print(f"original shape: {x.shape}")
x = x.unsqueeze(0)
print(f"unsqueezed in dim 0: {x.shape}")
print("----------------------------------")
y = torch.tensor([3, 4])
print(f"original shape: {y.shape}")
m = y.unsqueeze(1)
print(f"unsqueezed in dim 1: {m.shape}\n{m}")
n = y.unsqueeze(0)
print(f"unsqueezed in dim 0: {n.shape}\n{n}")

运行结果:
在这里插入图片描述

2.维度扩展expand

x.expand(a, b, c, d) 操作将原来维度扩展为(a,b ,c ,d),传入n个参数a,b,c,d…表示维度扩展后的形状,其中当传入的维度上的参数为-1时表示该维度保持不变。

x.expand(a, b, c, d) 

使用expand只能扩张原来大小为1的维度,该维度扩张为n后的张量将在该维度上将数据复制n次,将原shape为(1,3,1)的张量扩展为shape为(2,3,4)的张量:

x = torch.randint(0, 2, [1, 3, 1])
y = x.expand(2, 3, 4)
print(f"original tensor in dim(1,3,1):\n{x}")
print(f"expanded tensor in dim(2,3,4):\n{y}")

运行结果:
在这里插入图片描述

3.维度减少squeeze

x.squeeze()操作可以压缩张量的维度,当不传入任何参数时,squeeze()操作压缩所有可以压缩的维度,当传入指定参数时,参数可以是负数,将压缩张量的指定维度。

x.squeeze()
x.squeeze(n)
x = torch.tensor([1, 2, 3, 4, 5, 6])
y = x.unsqueeze(1).unsqueeze(2).unsqueeze(0)
print(f"original shape :     {y.shape}")
print(f"squeezed in all dim: {y.squeeze().shape}")
print(f"squeezed in dim  0:  {y.squeeze(0).shape}")
print(f"squeezed in dim  1:  {y.squeeze(1).shape}")

运行结果:
在这里插入图片描述

4.维度扩展repeat

x.repeat(a,b,c,d) 在原来维度上分别拷贝a,b,c,d次

x.repeat(a, b, c, d)

原张量x的shape为(1,2,1),通过执行repeat(2,1,2)操作后shape变为(2,2,2),再通过repeat(1,3,5)操作后shape变为(2,6,10):

x = torch.tensor([1, 2]).reshape(1, 2, 1)
y = x.repeat(2, 1, 2)
z = y.repeat(1, 3, 5)
print(f"original tensor in dim(1,2,1): \n{x}")
print(f"repeated tensor in dim(2,2,2): \n{y}")
print(f"repeated tensor in dim(2,6,10): \n{z}")

在这里插入图片描述

五.维度交换

1.简单的二维转置函数t:

x.t()

2.交换任意两个维度transpose

x = torch.randint(1, 10, [2, 4, 3])
y = x.transpose(0, 2)
print(f"original tensor in shape(2,4,3):\n{x}")
print(f"transposed tensor in shape(3,4,2):\n{y}")

在这里插入图片描述

3.重新排列原来的维度顺序permute

permute操作用于重新排列维度顺序,传入的参数代表维度的索引,即dim a,dim b…

x.permute(a, b, c, d)

x.permute(1,2,0)的意义是将原来的1维度放到0维度的位置,将原来的2维度放到1维度的位置,将原来的0维度放到2维度的位置,以此重新排列维度顺序:

x = torch.tensor([
    [
        [1, 2, 3, 1],
        [4, 5, 3, 6],
        [1, 1, 0, 1]
    ],
    [
        [7, 8, 9, 1],
        [0, 2, 0, 3],
        [6, 5, 1, 8],
    ]
])

y = x.permute(1, 2, 0)
print(f"original shape: {x.shape}")
print(f"permuted shape: {y.shape}")
print(f"permuted tensor:\n{y}")

在这里插入图片描述

六.张量合并

1.cat操作

代码示例:

torch.cat([a,b], dim=0)

cat()函数中首先传入一个列表[a, b, c…]表示要合并的张量集合,然后传入一个维度dim=n,表示将这些张量在维度n上进行合并操作。
注意concat操作合并的维度上两个张量的维度大小可以不同,但是其余维度上必须具有相同的大小,例如(3,4,5)可以和(2,4,5)在0维度上concat合并为(5,4,5)。但是不能在1维度上合并,因为0维度上两个张量的维度大小不同,分别为3和2。

a = torch.tensor([
    [
        [1, 0, 1],
        [9, 1, 2],
        [3, 3, 1]
    ],
    [
        [0, 0, 1],
        [2, 5, 1],
        [3, 3, 2]
    ],
    [
        [4, 1, 10],
        [0, 2, 1],
        [1, 1, 1]
    ]
], dtype=int)

b = torch.tensor([
    [
        [0, 0, 2],
        [1, 10, 2],
        [2, 3, 0]
    ],
    [
        [0, 4, 1],
        [2, 0, 1],
        [1, 3, 6]
    ],
    [
        [0, 1, 4],
        [1, 2, 1],
        [1, 4, 1]
    ]
], dtype=int)

c = torch.cat([a, b], dim=0)
print(f"shape of A: {a.shape}")
print(f"shape of B: {b.shape}")
print(f"shape of A concat B: {c.shape}")
print(c)

运行结果:
在这里插入图片描述

2.stack操作

stack操作在合并维度处创建一个新的维度。
代码示例:

torch.stack([a, b], dim=0)
tensorA = torch.tensor([
    [1, 2, 3],
    [4, 5, 6]
])

tensorB = torch.tensor([
    [7, 8, 9],
    [3, 2, 1]
])
print(f"tensorA.shape:{tensorA.shape}")
print(f"tensorB.shape:{tensorB.shape}")
print("try to stack A with B in dim0:")
tensorC = torch.stack([tensorA, tensorB], dim=0)
print(f"tensorC.shape:{tensorC.shape}\n{tensorC}\n--------------------------")
print("try to stack A with B in dim1:")
tensorC = torch.stack([tensorA, tensorB], dim=1)
print(f"tensorC.shape:{tensorC.shape}\n{tensorC}\n--------------------------")
print("try to stack A with B in dim2:")
tensorC = torch.stack([tensorA, tensorB], dim=2)
print(f"tensorC.shape:{tensorC.shape}\n{tensorC}\n--------------------------")
print("try to stack A with B in dim3:")
tensorC = torch.stack([tensorA, tensorB], dim=3)
print(f"tensorC.shape:{tensorC.shape}")
print(tensorC)

运行结果:
在这里插入图片描述

七.张量的分割

1.split操作

split操作是对张量在指定维度上将张量进行分割,可以按给定长度等分,也可以通过列表传入分割方法。下面两种分割方式结果是相同的,第一种方式是将张量x在维度0上按照每一份长度为1进行等分;第二种方式是按照长度[1, 1, 1]的模式将张量x分成三份。

a, b, c = x.split(1, dim=0)
a, b, c = x.split([1, 1, 1], dim=0)
x = torch.tensor([
    [
        [1, 2, 1, 3],
        [0, 1, 2, 1],
        [9, 8, 1, 2]
    ],
    [
        [1, 2, 1, 2],
        [4, 2, 4, 4],
        [1, 0, 0, 0]
    ],
    [
        [3, 3, 3, 1],
        [1, 0, 2, 3],
        [5, 1, 2, 5]
    ]
])
print(x.shape)
a, b, c = x.split(1, dim=0)
print(f"a.shape:{a.shape}\nb.shape:{b.shape}\nc.shape:{c.shape}")
print("------------------------------------")
a, b = x.split([1, 2], dim=0)
print(f"a.shape:{a.shape}\nb.shape:{b.shape}")

在这里插入图片描述

2.chunk操作

chunk操作是对张量的某一维度按数量进行分割,首先传入第一个参数代表要分割成的份数,第二个参数指定了在哪一个维度上分割,下面的API样例代表将张量在维度0上分割为3个张:

a, b, c = x.chunk(3, dim=0)

对上例split中的张量x用chunk做分割的示例如下:

a, b, c = x.chunk(3, dim=1)
print(a.shape)
print(b.shape)
print(c.shape)
print("---------------------")
a, b = x.chunk(2, dim=2)
print(a.shape)
print(b.shape)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/31076.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Jenkins-pipeline自动化构建Java应用

本实验操作需要:Jenkins,git代码仓库(如gitlab,gitee等都可以),maven,docker,docker镜像仓库(habor,nexus或者阿里云ACR等)以及k8s环境。 前期准…

Python网络爬虫基础进阶到实战教程

文章目录 认识网络爬虫HTML页面组成Requests模块get请求与实战效果图代码解析 Post请求与实战代码解析 发送JSON格式的POST请求使用代理服务器发送POST请求发送带文件的POST请求 Xpath解析XPath语法的规则集:XPath解析的代码案例及其详细讲解:使用XPath解…

k8s使用ceph存储

文章目录 初始化操作k8s使用ceph rbdvolumePV静态pv动态pv k8s使用cephfsvolume静态pv 初始化操作 ceph创建rbd存储池 ceph osd pool create k8s-data 32 32 replicated ceph osd pool application enable k8s-data rbd rbd pool init -p k8s-dataceph添加授权,需…

吴恩达ChatGPT《Building Systems with the ChatGPT API》笔记

1. 课程介绍 使用ChatGPT搭建端到端的LLM系统 本课程将演示使用ChatGPT API搭建一个端到端的客户服务辅助系统,其将多个调用链接到语言模型,根据前一个调用的输出来决定使用不同的指令,有时也可以从外部来源查找信息。 课程链接&#xff1a…

client-go的Indexer三部曲之三:源码阅读

欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 《client-go的Indexer三部曲》全部链接 基本功能性能测试源码阅读 本篇概览 本文是《client-go的Indexer三部曲》系列的终篇,主要任务是阅读和…

VR全景智慧园区,沉浸式数字化体验,720度全视角展示

导语: 随着科技的迅猛发展,虚拟现实(Virtual Reality,简称VR)全景技术已经成为了人们趋之若鹜的新兴领域。 而城市园区作为现代社会的重要组成部分,也正在积极寻求创新的方式来吸引更多的人流和投资。 一&…

C++基础

C基础入门 1 C初识 1.1 第一个C程序 编写一个C程序总共分为4个步骤 创建项目创建文件编写代码运行程序 1.1.1 创建项目 ​ Visual Studio是我们用来编写C程序的主要工具,我们先将它打开 1.1.2 创建文件 右键源文件,选择添加->新建项 1.1.3 编…

SignalR快速入门 ~ 仿QQ即时聊天,消息推送,单聊,群聊,多群公聊(基础=》提升)

SignalR快速入门 ~ 仿QQ即时聊天,消息推送,单聊,群聊,多群公聊(基础》提升,5个Demo贯彻全篇,感兴趣的玩才是真的学) 官方demo:http://www.asp.net/signalr/overview/getting-started…

【面试】标准库相关题型(二)

文章目录 1. deque底层实现原理1.1 概述1.2 原理图1.3 类结构1.4 操作函数 2. 什么时候使用vector、list、deque2.1 vector2.2 list2.3 deque 3. priority_queue的底层实现原理3.1 一句话概括:用堆来实现优先级队列3.2 堆结构3.3 底层容器3.4 STL对堆结构提供的接口…

Java-API简析_java.lang.SecurityManager类(基于 Latest JDK)(浅析源码)

【版权声明】未经博主同意,谢绝转载!(请尊重原创,博主保留追究权) https://blog.csdn.net/m0_69908381/article/details/131346082 出自【进步*于辰的博客】 其实我的【Java-API】专栏内的博文对大家来说意义是不大的。…

Python入门(二十七)测试(二)

测试(二) 1.测试类2.各种断言方法3.一个要测试的类4.测试AnonymousSurvey类5.方法setUp() 1.测试类 前面我们编写了针对单个函数的测试,下面来编写针对类的测试。很多程序中都会用到类,因此证明我们的类能够正确工作大有裨益。如…

学了那么长时间的编程,C语言的各种操作符都搞不懂?点开这里有详细的介绍—>

目录 前言 一、原码、反码、补码的基础概念 1.原码 2.反码 3.补码 二、原码、反码、补码的计算方法 1.原码 2.反码 3.补码 三、算术操作符 四、移位操作符 1. 左移操作符 移位规则: 2. 右移操作符 移位规则: (1) …

电脑怎么录屏?推荐2款录制电脑屏幕的软件!

案例:我经常需要把电脑上的内容分享给别人,一般通过手机拍摄的方式。这就导致视频十分模糊,给人的观感不太好,有没有什么方法可以实现在电脑上直接录屏? 【我想录制我的电脑屏幕上的内容分享给别人,但是我…

几个SQL的高级写法

一、ORDER BY FLELD() 自定义排序逻辑 MySql 中的排序 ORDER BY 除了可以用 ASC 和 DESC,还可以通过 ORDER BY FIELD(str,str1,...) 自定义字符串/数字来实现排序。这里用 order_diy 表举例,结构以及表数据展示: ORDER BY FIELD(str,str1,..…

【Neo4j教程之CQL函数基本使用】

🚀 Neo4j 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,C…

3d重建+神经渲染

3d重建 基于深度相机(结构光、TOF、双目摄像头)的三维重建基于图像的三维重建:深度学习基于视觉几何的传统三维重建:这种三维重建方法研究时间比较久远,技术相对成熟。主要通过多视角图像对采集数据的相机位置进行估计,再通过图像…

一种对不同类型齐格勒-尼科尔斯 P-I-D 控制器调谐算法研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

常用工具类之AJ-Captcha入门

1.引入MAVEN依赖 若依官方引入的是1.2.7版本。我选择了目前最常用的1.3.0版本。 在项目中给的 ruoyi-framework\pom.xml 添加依赖 <!-- anji滑块验证码 --><dependency><groupId>com.anji-plus</groupId><artifactId>spring-boot-starter-captc…

通过调整图像hue值并结合ImageEnhance库以实现色调增强

前言 PIL库中的ImageEnhance类可用于图像增强&#xff0c;可以调节图像的亮度、对比度、色度和锐度。 通过RGB到HSV的变换加调整可以对图像的色调进行调整。 两种方法结合可以达到更大程度的图像色调增强。 调整hue值 __author__ TracelessLe __website__ https://blog…

vue2中引入天地图及相关配置

前言 项目中需要引入特殊用途的地图&#xff0c;发现天地图比高德地图、百度地图要更符合需求&#xff0c;于是看了看天地图。 正文 vue2项目中如何引入天地图并对相关的配置进行修改使用呢&#xff1f;官方给的4.0版本的使用说明。 引入&#xff1a; 进入到public/index.html中…