通过调整图像hue值并结合ImageEnhance库以实现色调增强

前言

PIL库中的ImageEnhance类可用于图像增强,可以调节图像的亮度、对比度、色度和锐度。
在这里插入图片描述
在这里插入图片描述

通过RGB到HSV的变换加调整可以对图像的色调进行调整。
两种方法结合可以达到更大程度的图像色调增强。

调整hue值

__author__ = 'TracelessLe'
__website__ = 'https://blog.csdn.net/TracelessLe'

import numpy as np
from PIL import Image, ImageEnhance

filename = 'test.png'
pil_img = Image.open(filename).convert('RGB')
hue = np.random.randint(0, 360)
out = hueChange(pil_img, hue/360.)  # 调整hue值
out.save('out.png')

其中hueChange方法实现如下:

__author__ = 'TracelessLe'
__website__ = 'https://blog.csdn.net/TracelessLe'

import numpy as np
from PIL import Image

def rgb_to_hsv(rgb):
    # Translated from source of colorsys.rgb_to_hsv
    # r,g,b should be a numpy arrays with values between 0 and 255
    # rgb_to_hsv returns an array of floats between 0.0 and 1.0.
    rgb = rgb.astype('float')
    hsv = np.zeros_like(rgb)
    # in case an RGBA array was passed, just copy the A channel
    hsv[..., 3:] = rgb[..., 3:]
    r, g, b = rgb[..., 0], rgb[..., 1], rgb[..., 2]
    maxc = np.max(rgb[..., :3], axis=-1)
    minc = np.min(rgb[..., :3], axis=-1)
    hsv[..., 2] = maxc
    mask = maxc != minc
    hsv[mask, 1] = (maxc - minc)[mask] / maxc[mask]
    rc = np.zeros_like(r)
    gc = np.zeros_like(g)
    bc = np.zeros_like(b)
    rc[mask] = (maxc - r)[mask] / (maxc - minc)[mask]
    gc[mask] = (maxc - g)[mask] / (maxc - minc)[mask]
    bc[mask] = (maxc - b)[mask] / (maxc - minc)[mask]
    hsv[..., 0] = np.select(
        [r == maxc, g == maxc], [bc - gc, 2.0 + rc - bc], default=4.0 + gc - rc)
    hsv[..., 0] = (hsv[..., 0] / 6.0) % 1.0
    return hsv

def hsv_to_rgb(hsv):
    # Translated from source of colorsys.hsv_to_rgb
    # h,s should be a numpy arrays with values between 0.0 and 1.0
    # v should be a numpy array with values between 0.0 and 255.0
    # hsv_to_rgb returns an array of uints between 0 and 255.
    rgb = np.empty_like(hsv)
    rgb[..., 3:] = hsv[..., 3:]
    h, s, v = hsv[..., 0], hsv[..., 1], hsv[..., 2]
    i = (h * 6.0).astype('uint8')
    f = (h * 6.0) - i
    p = v * (1.0 - s)
    q = v * (1.0 - s * f)
    t = v * (1.0 - s * (1.0 - f))
    i = i % 6
    conditions = [s == 0.0, i == 1, i == 2, i == 3, i == 4, i == 5]
    rgb[..., 0] = np.select(conditions, [v, q, p, p, t, v], default=v)
    rgb[..., 1] = np.select(conditions, [v, v, v, q, p, p], default=t)
    rgb[..., 2] = np.select(conditions, [v, p, t, v, v, q], default=p)
    return rgb.astype('uint8')

def hueChange(img, hue):
    arr = np.array(img)
    hsv = rgb_to_hsv(arr)
    hsv[..., 0] = hue
    rgb = hsv_to_rgb(hsv)
    return Image.fromarray(rgb, 'RGB')

关于基于hue值的色调调整原理可见参考资料[1]。

此处实现源码可见参考资料[2]。

基于ImageEnhance方法调节图像色度

在这里插入图片描述

__author__ = 'TracelessLe'
__website__ = 'https://blog.csdn.net/TracelessLe'

import random
import numpy as np
from PIL import Image, ImageEnhance

filename = 'test.png'
pil_img = Image.open(filename).convert('RGB')
enh_col = ImageEnhance.Color(pil_img)
factor = random.random() * 1.0 + 0.5
out = enh_col.enhance(factor)
out.save('out.png')

合并操作

__author__ = 'TracelessLe'
__website__ = 'https://blog.csdn.net/TracelessLe'

import random
import numpy as np
from PIL import Image, ImageEnhance


def rgb_to_hsv(rgb):
    # Translated from source of colorsys.rgb_to_hsv
    # r,g,b should be a numpy arrays with values between 0 and 255
    # rgb_to_hsv returns an array of floats between 0.0 and 1.0.
    rgb = rgb.astype('float')
    hsv = np.zeros_like(rgb)
    # in case an RGBA array was passed, just copy the A channel
    hsv[..., 3:] = rgb[..., 3:]
    r, g, b = rgb[..., 0], rgb[..., 1], rgb[..., 2]
    maxc = np.max(rgb[..., :3], axis=-1)
    minc = np.min(rgb[..., :3], axis=-1)
    hsv[..., 2] = maxc
    mask = maxc != minc
    hsv[mask, 1] = (maxc - minc)[mask] / maxc[mask]
    rc = np.zeros_like(r)
    gc = np.zeros_like(g)
    bc = np.zeros_like(b)
    rc[mask] = (maxc - r)[mask] / (maxc - minc)[mask]
    gc[mask] = (maxc - g)[mask] / (maxc - minc)[mask]
    bc[mask] = (maxc - b)[mask] / (maxc - minc)[mask]
    hsv[..., 0] = np.select(
        [r == maxc, g == maxc], [bc - gc, 2.0 + rc - bc], default=4.0 + gc - rc)
    hsv[..., 0] = (hsv[..., 0] / 6.0) % 1.0
    return hsv

def hsv_to_rgb(hsv):
    # Translated from source of colorsys.hsv_to_rgb
    # h,s should be a numpy arrays with values between 0.0 and 1.0
    # v should be a numpy array with values between 0.0 and 255.0
    # hsv_to_rgb returns an array of uints between 0 and 255.
    rgb = np.empty_like(hsv)
    rgb[..., 3:] = hsv[..., 3:]
    h, s, v = hsv[..., 0], hsv[..., 1], hsv[..., 2]
    i = (h * 6.0).astype('uint8')
    f = (h * 6.0) - i
    p = v * (1.0 - s)
    q = v * (1.0 - s * f)
    t = v * (1.0 - s * (1.0 - f))
    i = i % 6
    conditions = [s == 0.0, i == 1, i == 2, i == 3, i == 4, i == 5]
    rgb[..., 0] = np.select(conditions, [v, q, p, p, t, v], default=v)
    rgb[..., 1] = np.select(conditions, [v, v, v, q, p, p], default=t)
    rgb[..., 2] = np.select(conditions, [v, p, t, v, v, q], default=p)
    return rgb.astype('uint8')

def hueChange(img, hue):
    arr = np.array(img)
    hsv = rgb_to_hsv(arr)
    hsv[..., 0] = hue
    rgb = hsv_to_rgb(hsv)
    return Image.fromarray(rgb, 'RGB')


if __name__ == "__main__":
	filename = 'test.png'
	pil_img = Image.open(filename).convert('RGB')
	hue = np.random.randint(0, 360)
	pil_img2 = hueChange(pil_img, hue/360.)
	enh_col = ImageEnhance.Color(pil_img2)
	factor = random.random() * 1.0 + 0.5
	out = enh_col.enhance(factor)
	out.save('out.png')
	

版权说明

本文为原创文章,独家发布在blog.csdn.net/TracelessLe。未经个人允许不得转载。如需帮助请email至tracelessle@163.com或扫描个人介绍栏二维码咨询。
在这里插入图片描述

参考资料

[1] 图像色彩知识及python实现图片色调转换 - 知乎
[2] RGB to HSV Python, change Hue continuously - Stack Overflow
[3] 【python图像处理】图像的增强(ImageEnhance类详解)_PHILOS_THU的博客-CSDN博客
[4] 如何用 Python 给照片换色_VIP_CQCRE的博客-CSDN博客
[5] ImageEnhance Module - Pillow (PIL Fork) 9.5.0 documentation

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/31047.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vue2中引入天地图及相关配置

前言 项目中需要引入特殊用途的地图,发现天地图比高德地图、百度地图要更符合需求,于是看了看天地图。 正文 vue2项目中如何引入天地图并对相关的配置进行修改使用呢?官方给的4.0版本的使用说明。 引入: 进入到public/index.html中…

Cocos Creator3D:制作可任意拉伸的 UI 图像

推荐:将 NSDT场景编辑器 加入你的3D工具链 3D工具集: NSDT简石数字孪生 制作可任意拉伸的 UI 图像 UI 系统核心的设计原则是能够自动适应各种不同的设备屏幕尺寸,因此我们在制作 UI 时需要正确设置每个控件元素的尺寸(size&#…

TypeScript ~ TS 掌握自动编译命令 ③

作者 : SYFStrive 博客首页 : HomePage 📜: TypeScript ~ TS 📌:个人社区(欢迎大佬们加入) 👉:社区链接🔗 📌:觉得文章不错可以点点关注 &…

【CV 向】OpenCV 图形绘制指南

文章目录 引言1. 创建画布2. 绘制线段3. 绘制矩形4. 绘制圆5. 绘制椭圆6. 绘制多边形7. 绘制字体结论 引言 Python OpenCV 是一个功能强大的计算机视觉库,除了图像处理和计算机视觉任务外,它还提供了丰富的功能来绘制各种图形。无论是在计算机视觉应用中…

Springboot程序开启远程DEBUG

一、远程debug的原理 Spring Boot程序远程debug的原理主要是通过在启动时指定JVM参数来启用远程调试模式,并在调试器中连接到程序所在的调试地址,从而实现对程序的远程调试。 具体步骤如下: 在运行Spring Boot程序时,在启动命令…

软考高级系统架构设计师(四) 计算机网络2磁盘阵列

目录 磁盘阵列RAID RAID级别 ​IPV6 网络接入技术 综合布线 磁盘阵列RAID 磁盘阵列(Redundant Arrays of Independent Disks,RAID),有"数块独立磁盘构成具有冗余能力的阵列”之意。 磁盘阵列是由很多块独立的磁盘&#…

P35[10-5]硬件IIC配置+读写MPU6050(软)(此处注意与软件iic区别)

接线图如下: 注:硬件读写iic的连接位置固定,可参考引脚定义表(如下) 声明:I2C1重映射时,有一次更换机会,但是此面包板由于OLED的该引脚无法接线,因此只能接在PB10 PB11的I2C2上 软件iic初始化部分:(此处即可替代掉整个软件iic.c初始化的底层) void MPU6050_Init(vo…

MyCat总结

目录 什么是mycat 核心概念 逻辑库 逻辑表 分片节点 数据库主机 用户 mycat原理 目录结构 配置文件 读写分离 搭建读写分离 搭建主从复制: 搭建读写分离: 分片技术 垂直拆分 实现分库: 水平拆分 实现分库: ER表 全局表 分…

IDEA新UI速览,成了VS Code的样子?

IntelliJ IDEA 2023.1 现已发布。此版本包括对新 UI 的改进,根据从用户那里收到的反馈进行了彻底改造。此外还实现了性能增强,从而在打开项目时更快地导入 Maven 和更早地使用 IDE 功能。由于采用了 background commit checks,新版本提供了简…

【学习学习】NLP理解层次模型

NLP(Neuro-Linguistic Programming,神经语言程序学),由两位美国人理查得.班德勒(Richard Bandler)与约翰.葛瑞德(John Grinder)于1976年创办,并在企业培训中广泛使用。美…

Vue3的计算属性和监听属性

目录 computed 语法介绍 简写版 完整版 watch 介绍 监听ref式数据代码示例 监听reactive式数据 watchEffect函数 computed 语法介绍 与Vue2.x中computed配置功能一致 import {computed} from vuesetup(){...//计算属性——简写let fullName computed(()>{return per…

【C++篇】C++新增的一些基础特性

友情链接:C/C系列系统学习目录 知识总结顺序参考C Primer Plus(第六版)和谭浩强老师的C程序设计(第五版)等,内容以书中为标准,同时参考其它各类书籍以及优质文章,以至减少知识点上的…

改进YOLOv8 | 优化器篇 | YOLOv8 引入谷歌 Lion 优化器

论文地址:https://arxiv.org/pdf/2302.06675.pdf 代码地址:https://github.com/google/automl/tree/master/lion 我们提出了一种将算法发现作为程序搜索的方法,并将其应用于发现用于深度神经网络训练的优化算法。我们利用高效的搜索技术来探索一个无限且稀疏的程序空间。为了…

2022前端趋势报告(上)

前端博主,热衷各种前端向的骚操作,经常想到哪就写到哪,如果有感兴趣的技术和前端效果可以留言~博主看到后会去代替大家踩坑的~ 主页: oliver尹的主页 格言: 跌倒了爬起来就好~ 一、前言 本文内容来自于《St…

Python在不同领域中的应用

Python 是一种功能强大且易于使用的编程语言,因此在各个领域都有广泛的应用。以下是 Python 在不同领域中的应用: 数据科学:Python 是数据科学家和机器学习专家的首选工具之一。它有成熟的数据分析库和工具包,如 Pandas、NumPy、S…

【前端知识】React 基础巩固(十五)——书籍购物车简单案例

React 基础巩固(十五)——书籍购物车简单案例 案例代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta http-equiv"X-UA-Compatible" content"IEedge" /><meta name"v…

C国演义 [第六章]

第六章 最长递增子序列题目理解步骤dp含义递推公式初始化遍历顺序 代码 最长连续递增序列题目理解步骤dp含义递推公式初始化遍历顺序 代码 最长递增子序列 力扣链接 给你一个整数数组 nums &#xff0c;找到其中最长严格递增子序列的长度。 子序列 是由数组派生而来的序列&am…

Linux->线程同步

目录 前言&#xff1a; 1 线程同步引入 2 条件变量 2.1 线程饥饿 2.2 条件变量接口 2.3 添加条件变量 3 生产者和消费者模型 前言&#xff1a; 本篇主要讲解了关于线程同步的相关知识&#xff0c;还有生产者和消费者模型的认识和使用。 1 线程同步引入 在讲解线程同步之…

数仓架构“瘦身”,Hologres 5000CU时免费试用

Hologres基于创新的HSAP架构&#xff0c;可以将您原先数仓架构中的OLAP系统&#xff08;Greenplum、Presto、Impala、ClickHouse&#xff09;、KV数据库/Serving系统&#xff08;HBase、Redis&#xff09;统一在一个大数据计算引擎中&#xff0c;并提供快速的离线实时一体化分析…

智能家居APP软件开发有何优势?

传统家居行业营销模式已经无法满足现代人多样化个性化的需求&#xff0c;也跟不上互联网时代的发展步伐了&#xff0c;很多传统家居行业都陷入了营销困境。通过智能家居APP软件开发&#xff0c;可以利用互联网改造传统模式&#xff0c;探索新的发展模式&#xff0c;可以说智能家…