如何通过 Prompt 优化大模型 Text2SQL 的效果

前言

在上篇文章中「大模型LLM在Text2SQL上的应用实践」介绍了基于SQLDatabaseChain的Text2SQL实践,但对于逻辑复杂的查询在稳定性、可靠性、安全性方面可能无法达到预期,比如输出幻觉、数据安全、用户输入错误等问题。

本文将从以下4个方面探讨通过Prompt Engineering来优化LLM的Text2SQL转换效果。

1. 问题及思路

2. Prompt概述

3. Text2SQL中的Prompt实践

4. 后续计划

1. 问题及思路

1.1 问题挑战

在自然语言处理(NLP)和人工智能(AI)领域,大型语言模型(LLM)如GPT-3和BERT已经取得显著的进步。然而,在将文本转换为SQL查询(Text to SQL)的任务上,这些模型仍有优化的空间。一些常见的挑战包括:

1. 输出幻觉(Hallucination):LLM在生成SQL语句时会生成一些看似合理,但实际与输入文本无关或错误的查询,这可能是由于模型尚未充分学习到SQL查询的语法和逻辑,导致在推理阶段产生误导性的输出。

2. 数据安全性:在处理敏感数据时,模型可能会生成泄露或篡改敏感信息的SQL语句。

3. 用户输入错误:用户在输入查询时拼写错误或有不合规的操作,这可能导致模型生成错误或高风险的SQL语句。

1.2 解决思路

针对上述问题,我们可以从Prompt Engineering(提示工程)和Fine Tuning(模型微调)两个方面进行考虑。

1. Prompt Engineering是一种通过设计特定的提示词或句子,引导模型生成更符合用户意图的输出的方法。例如,我们可以为模型添加一些关于SQL语法的提示信息,以帮助模型更好地理解SQL语句的结构和规则。通过这种方式,我们可以有效地降低输出幻觉的可能性,提高模型的准确性和稳定性。

2. Fine Tuning则是指在预训练模型的基础上,使用特定的数据集进行微调,以适应特定的任务需求。对于Text-to-SQL任务,我们可以使用包含大量SQL语句的数据集进行Fine Tuning,以提高模型对SQL语句的理解和生成能力。

1.3 思路对比

两者对比如下:


Fine Tuning

Prompt Engineering

方法

在与目标任务或领域相关的数据集上重新训练模型

输入提示的设计和调整,选择合适的关键词、短语或问题来引导模型生成所需的回答

复杂度

较高,涉及模型的重新训练和参数调整,需要对模型的内部结构和机制有一定的了解

较低,涉及到对输入提示的设计和调整,对模型本身的结构和机制要求较低

成本与时长

高,重新训练模型需要大量的计算资源和时间

低,可以通过迭代的方式逐步优化

性能

较高,模型深度理解特定任务或领域知识

稍低,侧重于引导模型生成与提示相关的回答

以我们都经历过的参加考试的例子做个通俗的对比:

1. Fine Tuning:考试前根据自己的知识体系,参考考试的题型、历史真题,做好有侧重点的准备;考试过程中根据给定的题目,按照自己的理解直接给出答案

2. Prompt Engineering:考试前不做额外的准备,带着自己的知识体系去参加考试;考试过程中除了给定的题目外,还会有类似题目的解答思路,按照解答提示来给出答案

2. Prompt概述

2.1 Prompt概念

Prompt是一种通过设计特定的提示词或句子,引导模型生成更符合用户意图的输出的方法。例如,我们可以为模型添加一些关于SQL语法的提示信息,以帮助模型更好地理解SQL语句的结构和规则。

在这里插入图片描述

Prompt的组成包四个元素:

  • Instruction(指令,必需):告诉模型该怎么做,如何使用外部信息,如何处理查询并构建Out。

  • Context(上下文信息,可选):充当模型的附加知识来源。这些可以手动插入到提示中,通过矢量数据库(Vector Database)检索(检索增强)获得,或通过其他方式(API、计算等)引入。

  • Input Data(需要处理的数据,可选):通常(但不总是)是由人类用户(即提示者)In 到系统中的查询。

  • Output Indicator(要输出的类型或格式,可选):标记要生成的文本的开头。

在这里插入图片描述

代码示例:

prompt = """ Answer the question based on the context below. If the question cannot be answered using the information provided answer with "I don't know".

Context: Large Language Models (LLMs) are the latest models used in NLP. Their superior performance over smaller models has made them incredibly useful for developers building NLP enabled applications. These models can be accessed via Hugging Face's `transformers` library, via OpenAI using the `openai` library, and via Cohere using the `cohere` library.

Question: Which libraries and model providers offer LLMs?

Answer: """

2.2 Prompt编写原则

在这里插入图片描述

1. 关键要素

  • 明确目标:清晰定义任务,以便模型理解。

  • 具体指导:给予模型明确的指导和约束。

  • 简介明了:使用简练、清晰的语言表达Prompt。

  • 适当引导:通过示例或问题边界引导模型。

  • 迭代优化:根据输出结果,持续调整和优化Prompt。

2. 有效做法

  • 强调,可以适当的重复命令和操作。

  • 给模型一个出路,如果模型可能无法完成,告诉它说“不知道”,别让它乱“联想”。

  • 尽量具体,它还是孩子,少留解读空间。

2.3 Prompt类型

在这里插入图片描述

2.3.1 Zero-Shot Prompting

直接向模型提出问题,不需要任何案例,模型就能回答你的问题,基于模型训练的时候提供的大量数据,能做初步的判断。

1. Zero-Shot Prompting 技术依赖于预训练的语言模型。

2. 为了获得最佳性能,它需要大量的样本数据进行微调。像ChatGPT 就是一个例子,它的样本数量是过千亿。

3. 由于Zero-Shot Prompting 技术的灵活性和通用性,它的输出有时可能不够准确,或不符合预期。这可能需要对模型进行进一步的微调或添加更多的提示文本来纠正。

2.3.2 Few-Shot Prompting

向模型提出问题,同时给出少量案例,模型根据给定的案例调整输出的回答。

缺点:依赖于案例的质量,案例如果给的不恰当,模型也会学到不恰当的描述和回答。

**2.3.3 Chain of Thought(CoT)**思维链

Jason Wei等人(2022)引入的思维链(CoT)提示,通过中间推理步骤实现复杂的推理能力。可以将其与少样本提示相结合,以获得更好的结果,以便在回答之前进行推理的更复杂的任务。

在这里插入图片描述

有两种方式增加GPT的推理能力,或者CoT能力:

1. 第一种:增加案例,如下所示,第一次回答错误,给一个计算过程的案例,GPT可以通过案例学会简单推理。

在这里插入图片描述

2. 第二种:增加关键句,Let’s think step by step,测试人员测了很多类似的句子,最后发现这句话是效果最好的,这个时候不加案例,GPT也具备一定的推理能力。

在这里插入图片描述

根据 Wei 等人的论文表明,它仅在大于等于 100B 参数的模型中使用才会有效。如果使用的是小样本模型,这个方法不会生效。

2.3.4 Self-Consistency 自洽

是对CoT的一个补充,让模型生成多个思维链,然后取最多数答案的作为最终结果。其实重复运算多次,取概率最高的那一个,需要借助脚本辅助完成这个功能。

在这里插入图片描述

1. 从语言模型中生成多个不同的“推理路径(reasoning paths)”,这些路径可能因模型的随机性或不同的参数设置(如temperature、top_p等)而有所不同。有助于模型更全面地考虑问题,并可能导致更准确或更可靠的最终答案。

2. 对上一步生成的多个推理路径进行“边缘化(marginalize out)”以得到一个最终的、一致的答案。边缘化在这里意味着从多个可能的推理路径中找出最常见或最一致的答案。

2.3.5 Tree of Thoughts(ToT) 思维树

Tree of Thoughts(ToT)框架,用于改进语言模型(LMs)的推理能力。该框架是对流行的“Chain of Thought”方法的一种泛化,允许模型在解决问题的过程中进行更多的探索和策略性前瞻。

ToT允许模型自我评估不同的选择,以决定下一步的行动,并在必要时进行前瞻或回溯,以做出全局性的选择。

在这里插入图片描述

在24点游戏中,使用链式思考提示的GPT-4仅解决了4%的任务,而使用ToT方法的成功率达到了74%。

2.3.6 ReAct框架

Yao等人(2022)引入了一个框架,其中LLMs以交错的方式生成推理轨迹和任务特定操作,并且允许LLMs与外部工具交互来获取额外信息,从而给出更可靠和实际的回应。ReAct的灵感来自于“行为”和“推理”之间的协同作用,正是这种协同作用使得人类能够学习新任务并做出决策或推理。

下图展示ReAct的一个示例,举例执行问题回答所涉及的不同步骤。

在这里插入图片描述

实现流程如下:

(1)用Prompt实现一个样例,比如上面的模板:Thought:xxx ==> Action: Search[xxx];

(2)LLMs会根据模板相同的逻辑,结合CoT思维链方式一步一步思考,并获取外部知识;

(3)最后Action: Finish获取最终结果后结束。

ReAct框架在后续介绍Text2SQL的Agent实现的文章中还会详细介绍,步骤如下:

在这里插入图片描述

3. Text2SQL中的Prompt实践

3.1 现有问题

以上篇文中「大模型LLM在Text2SQL上的应用实践」的数据库Chinook为例,需求为统计“连续两个月都下订单的客户有哪些?”,示例代码可参考上文。

结果如下:

在这里插入图片描述

可以看出生成的SQL不准确,只统计了最近两个月中都下订单的客户,和统计需求不相符。那如何解决这个问题?

3.2 解决方案

1. 增强LLM模型能力

我们先从LLM模型的角度考虑。测试案例中用到的是“GPT-3.5-Turbo”,参考Spider排行榜(https://yale-lily.github.io/spider)可以看出GPT-4的效果还是一骑绝尘。

在这里插入图片描述

我们将LLM模型切换为GPT-4测试下效果,结果如下:

在这里插入图片描述

效果:生成的SQL基本上满足我们的需求。

成本:GPT-4的费用通常为GPT-3.5的10倍左右。所以该方案不是我们的首选方案。但其生成的SQL可以作为后续的参考和输入。

2. Prompt Engineering

采用Prompt的方式来实现。其中自定义Prompt信息包括:Database中Table Schema信息,Table Row数据样本和Few-shot Examples

PromptTemplate示例代码如下:

from langchain.prompts import PromptTemplate

TEMPLATE = """Given an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer.
Use the following format:

Question: "Question here"
SQLQuery: "SQL Query to run"
SQLResult: "Result of the SQLQuery"
Answer: "Final answer here"

Only use the following tables:

{table_info}.

Some examples of SQL queries that correspond to questions are:

{few_shot_examples}

Question: {input}"""

其中{table_info}包括Table Schema信息和Table Row数据样本,可通过LangChain中的SQLDatabase来获得,其封装在db.table_info中,示例内容如下:

CREATE TABLE "Track" (
"TrackId" INTEGER NOT NULL,
"Name" NVARCHAR(200) NOT NULL,
"AlbumId" INTEGER,
"MediaTypeId" INTEGER NOT NULL,
"GenreId" INTEGER,
"Composer" NVARCHAR(220),
"Milliseconds" INTEGER NOT NULL,
"Bytes" INTEGER,
"UnitPrice" NUMERIC(10, 2) NOT NULL,
PRIMARY KEY ("TrackId"),
FOREIGN KEY("MediaTypeId") REFERENCES "MediaType" ("MediaTypeId"),
FOREIGN KEY("GenreId") REFERENCES "Genre" ("GenreId"),
FOREIGN KEY("AlbumId") REFERENCES "Album" ("AlbumId")
)
SELECT * FROM 'Track' LIMIT 3;
TrackId  Name  AlbumId  MediaTypeId  GenreId  Composer  Milliseconds  Bytes  UnitPrice
1  For Those About To Rock (We Salute You)  1  1  1  Angus Young, Malcolm Young, Brian Johnson  343719  11170334  0.99
2  Balls to the Wall  2  2  1  None  342562  5510424  0.99
3  Fast As a Shark  3  2  1  F. Baltes, S. Kaufman, U. Dirkscneider & W. Hoffman  230619  3990994  0.99

整体的测试代码如下:

from langchain.utilities import SQLDatabase
from langchain.chat_models import ChatOpenAI
from langchain.schema.output_parser import StrOutputParser
from langchain import hub

# Initialize database
db = SQLDatabase.from_uri("sqlite:///xxx/Chinook.db")
# Pull down prompt
prompt = hub.pull("rlm/text-to-sql")
# Initialize model
model = ChatOpenAI()

# few shot examples
few_shots = {
    "List all artists.": "SELECT * FROM artists;",
    "Find all albums for the artist 'AC/DC'.": "SELECT * FROM albums WHERE ArtistId = (SELECT ArtistId FROM artists WHERE Name = 'AC/DC');",
    "连续两个月都下订单的客户有哪些?":"SELECT DISTINCT a.'CustomerId', a.'FirstName', a.'LastName' FROM 'Customer' a JOIN 'Invoice' b ON a.'CustomerId' = b.'CustomerId' JOIN 'Invoice' c ON a.'CustomerId' = c.'CustomerId' AND ((strftime('%Y-%m', b.'InvoiceDate') = strftime('%Y-%m', date(c.'InvoiceDate', '-1 month'))) OR (strftime('%Y-%m', b.'InvoiceDate') = strftime('%Y-%m', date(c.'InvoiceDate', '+1 month'))))"
}

# Create chain with LangChain Expression Language
inputs = {
    "table_info": lambda x: db.get_table_info(),
    "input": lambda x: x["question"],
    "few_shot_examples": lambda x: few_shots,
    "dialect": lambda x: db.dialect,
}
sql_response = (
    inputs
    | prompt
    | model.bind(stop=["\nSQLResult:"])
    | StrOutputParser()
)

# Call with a given question
sql_response.invoke({"question": "连续两个月都下订单的客户有哪些?"})

结果如下:

在这里插入图片描述

效果:生成的SQL满足我们的需求。

成本:增加的Prompt上下文信息所占tokens的费用,与GPT-4相比基本在10%左右。


**根据Prompt信息,**测试相似拓展问题,结果情况如下:

案例1:统计“连续两个月都下订单的客户总共有多少个?”

在这里插入图片描述

结果:生成的SQL满足我们的需求。

案例2:统计“连续两个月都下订单的客户的订单总共有多少个?”

在这里插入图片描述

结果:生成的SQL满足我们的需求,虽然不是最优解。

4. 后续计划

本文介绍了通过Few-shot Prompting来优化Text2SQL生成结果的案例,总的来说,Prompt Engineering提供了一种有效的方法来优化LLM在Text2SQL应用上的效果。通过精心设计的提示,我们可以引导模型更好地理解和处理用户的查询,从而提高查询的准确性和效率。除了使用Few-shot Prompting,还可以考虑Agent、CoT等相关技术对Text2SQL效果的优化,后续共同探讨。同时也期待更多的研究和应用来探索和利用大型语言模型的潜力。

技术交流

技术要学会分享、交流,不建议闭门造车。一个人走的很快、一堆人可以走的更远。

建立了大模型技术交流群,大模型学习资料、数据代码、技术交流提升, 均可加知识星球交流群获取,群友已超过2000人,添加时切记的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、添加微信号:mlc2060,备注:技术交流
方式②、微信搜索公众号:机器学习社区,后台回复:技术交流

在这里插入图片描述

参考文献:

https://python.langchain.com/docs/use_cases/qa_structured/sql

https://blog.langchain.dev/query-construction/

https://blog.langchain.dev/llms-and-sql/

https://www.promptingguide.ai/zh/techniques/fewshot

https://zhuanlan.zhihu.com/p/663355618

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/309246.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

用于生成信息提取的大型语言模型综述

论文地址:https://arxiv.org/pdf/2312.17617.pdf 代码仓库:https://github.com/quqxui/Awesome-LLM4IE-Papers 信息抽取(IE)旨在从纯自然语言文本中提取结构化知识(如实体、关系和事件)。最近&#xff0c…

初识 Elasticsearch 应用知识,一文读懂 Elasticsearch 知识文集(2)

🏆作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。 🏆多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。 🎉欢迎 👍点赞✍评论…

手拉手springboot3整合mybatis-plus多数据源

环境介绍 技术栈 springbootmybatis-plusmysql 软件 版本 mysql 8 IDEA IntelliJ IDEA 2022.2.1 JDK 17 Spring Boot 3.1.7 dynamic-datasource 3.6.1 mybatis-plus 3.5.3.2 加入依赖 <dependency><groupId>com.baomidou</groupId><arti…

WAVENET: A GENERATIVE MODEL FOR RAW AUDIO

ABSTRACT 这篇论文提出了WaveNet&#xff0c;一个生成原始音频波形的深度神经网络。这是一个完全的概率自回归模型&#xff0c;它基于之前已经生成的所有样本&#xff0c;来预测当前音频样本的概率分布&#xff1b;不过&#xff0c;我们将会展示它可以在每秒数万采样率的音频数…

精华整理几十个Python数据科学、机器学习、深度学习、神经网络、人工智能方面的核心库以及详细使用实战案例,轻松几行代码训练自己的专有人工智能模型

精华整理几十个Python数据科学、机器学习、深度学习、神经网络、人工智能方面的核心库以及详细使用实战案例,轻松几行代码训练自己的专有人工智能模型。 机器学习 人工智能的核心,是使计算机具有智能的根本途径。机器学习专注于算法,允许机器学习而不需要编程,并在暴露于新…

【VTKExample::Visualization】第四期 BLOW

很高兴在雪易的CSDN遇见你 VTK技术爱好者 QQ:870202403 前言 本文分享Blow样例,用于挤出吹塑工艺的有限元分析,希望对各位小伙伴有所帮助! 感谢各位小伙伴的点赞+关注,小易会继续努力分享,一起进步! 你的点赞就是我的动力(^U^)ノ~YO 目录 前言 1. Blow样例

求幸存数之和 - 华为OD统一考试

OD统一考试&#xff08;C卷&#xff09; 分值&#xff1a; 100分 题解&#xff1a; Java / Python / C 题目描述 给一个正整数列nums&#xff0c;一个跳数jump&#xff0c;及幸存数量left。运算过程为:从索引为0的位置开始向后跳&#xff0c;中间跳过 J 个数字&#xff0c;命中…

netdisk-fast-download强大的网盘直链解析工具源码

源码介绍 开源的网盘直链解析工具 netdisk-fast-download&#xff0c;这款强大的工具能够解析各类网盘直链&#xff0c;实现文件的快速上传与下载。目前已完美支持蓝奏云、奶牛快传、移动云空间、UC网盘、夸克网盘、小飞机盘、亿方云以及123云盘等众多知名网盘平台。 直链&am…

Spark---行动算子RDD

文章目录 1.行动算子1.1 reduce1.2 collect1.3 first1.4 count1.5 take1.6 takeOrdered1.7 aggregate1.8 fold1.9 countByKey1.10 countByValue1.11 save 相关算子1.12 foreach 1.行动算子 Spark的行动算子是触发作业执行的方法&#xff0c;它们会直接触发计算并返回结果。 行…

【集合大练习】---------------简易学生管理系统

目标&#xff1a; 实现学生对象新增&#xff0c;删除&#xff0c;查看&#xff0c;对象信息修改 整体实现思路&#xff1a; 1.定义学生类-------------创建学生对象 2.管理界面代码编写-------------命令提示面板 3.添加学生的代码编写---------add功能实现 4.查看学生信…

PPT插件-大珩助手-清除同类

清除同类-颜色 对于选定的形状&#xff0c;删除相同颜色 清除同类-文本 删除当前幻灯片中的文本对象 清除同类-非文本 删除当前幻灯片中的非文本对象 清空当页 删除当前幻灯片中的所有对象 选中的形状动画 删除选中的对象上的形状动画 当前页形状动画 对于当前页中的…

HDFS相关API操作

文章目录 API文档环境配置API操作准备工作创建文件夹文件上传文件下载文件删除文件的更名和移动获取文件详细信息 API文档 HDFS API官方文档&#xff1a;https://hadoop.apache.org/docs/r3.3.1/api/index.html 环境配置 将Hadoop的Jar包解压到非中文路径&#xff08;例如D:…

移动通信原理与关键技术学习之信道编解码(5)

先回顾调制的过程&#xff1a;调制就是对信号源的信息进行处理加到载波上&#xff0c;使其变为适合于信道传输的形式的过程&#xff0c;就是使载波随信号而改变的技术。 1.什么是IQ调制&#xff1f; 答&#xff1a;将数据分为两路&#xff0c;分别进行载波调制&#xff0c;两…

多维时序 | Matlab实现RIME-HKELM霜冰算法优化混合核极限学习机多变量时间序列预测

多维时序 | Matlab实现RIME-HKELM霜冰算法优化混合核极限学习机多变量时间序列预测 目录 多维时序 | Matlab实现RIME-HKELM霜冰算法优化混合核极限学习机多变量时间序列预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现RIME-HKELM霜冰算法优化混合核极限学…

2024年中国杭州|网络安全技能大赛(CTF)正式开启竞赛报名

前言 一、CTF简介 CTF&#xff08;Capture The Flag&#xff09;中文一般译作夺旗赛&#xff0c;在网络安全领域中指的是网络安全技术人员之间进行技术竞技的一种比赛形式。CTF起源于1996年DEFCON全球黑客大会&#xff0c;以代替之前黑客们通过互相发起真实攻击进行技术比拼的…

【开源】基于JAVA+Vue+SpringBoot的厦门旅游电子商务预订系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 景点类型模块2.2 景点档案模块2.3 酒店管理模块2.4 美食管理模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 学生表3.2.2 学生表3.2.3 学生表3.2.4 学生表 四、系统展示五、核心代码5.1 新增景点类型5.2 查询推荐的…

redis复习笔记04(小滴课堂)

新版SpringBoot2.X项目创建 在线创建springboot项目选择web和redis依赖就行。 SpringBoot2.x整合Redis客户端单元测试 SpringDataRedis配置RedisTemplate介绍 1.编写配置文件 2.单元测试进行测试&#xff1a; 可以看到我们设置进的值&#xff0c;乱码后面会解决。 获取不到设…

网络正常运行时间监控工具

正常运行时间是衡量系统可靠性的指标&#xff0c;表示为机器工作和可用时间的百分比。当提到 IT 网络时&#xff0c;正常运行时间是衡量网络设备、网站和其他服务的可用性的指标。网络正常运行时间通常以百分位数来衡量&#xff0c;例如“五个 9”&#xff0c;这意味着系统在 9…

RPA财务机器人在厦门市海沧医院财务管理流程优化汇总的应用RPA全球生态 2024-01-05 17:27 发表于河北

目前国内外研究人员对于RPA机器人在财务管理流程优化领域中的应用研究层出不穷&#xff0c;但现有研究成果主要集中在财务业务单一领域&#xff0c;缺乏财务管理整体流程一体化管控的研究。RPA机器人的功能绝非单一的财务业务处理&#xff0c;无论从自身技术发展&#xff0c;或…

如何使用vite框架封装一个js库,并发布npm包

前言介绍 最近&#xff0c;公司项目上需要把很多公用函数封装起来&#xff0c;作为一个公共的库使用。以前的做法是使用webpack或者Rollup。Rollup和Webpack都是常用的JavaScript模块打包工具&#xff0c;用于构建现代化的Web应用程序。但是&#xff0c;不管是webpack或者Roll…