移动通信原理与关键技术学习(4)

1.小尺度衰落 Small-Scale Fading

由于收到的信号是由通过不同的多径到达的信号的总和,接收信号的增强有一定的减小。

小尺度衰落的特点

  • 信号强度在很小的传播距离或时间间隔内的快速变化;
  • 不同多径信号多普勒频移引起的随机调频;
  • 多径传播延迟引起的时间色散 (回波)。

关键因素

  • 终端移动速度:影响每个多径分量上的多普勒频移;
  • 周围物体移动速度:在多径分量上引起时变多普勒频移;只有当周围物体比移动台移动得更快时,效果才占主导地位;
  • 多径时延多径传播:通道中存在反射物体和散射体的结果;多径分量的随机幅度和相位导致小规模衰落和/或信号失真;通过较长的反射路径传播所引入的信号延迟导致信号模糊,称为符号间干扰;
  • 信号带宽:如果发射信号的带宽大于信道的相干带宽,则接收信号会因引入符号间干扰而失真。

多普勒频移 Doppler Shift

由于时间较短,上述两个θ可看为不变;

相位变化:\Delta \phi =\frac{2\pi\Delta l}{\lambda }=\frac{2\pi v_s\Delta t}{\lambda }

多普勒频移:f_d=\frac{1}{2\pi}\cdot \frac{\Delta \phi }{\Delta t}=\frac{v}{\lambda }\cdot \cos \theta

例题:考虑发射机辐射的正弦载波频率为1850MHZ。对于每小时60英里的移动车辆如果移动设备(a) 直接向着发射机移动, (b)直接反着向发射机移动, (c)在垂直于发射信号到达方向的方向移动,则计算接收载波频率。

答:

多径衰落信道Multipath Fading Channels

信道可视为线性时变滤波器,接收信号是发射信号与信道冲激响应之间的卷积;

y(t)=\sum_{n=0}^{N}x(t)\bigotimes h(t;n\Delta \tau )

信道冲激响应:用于表征信道;可通过向通道发送脉冲并记录接收器输出的通道来测量(尽管不方便);对于移动通信信道来说是随时间变化的。

信道对移动通信系统会呈现频率选择性频率非选择性快衰落慢衰落等重要特性,移动通信系统应针对不同的特性进行相应的设计。利于信道的正面作用,消除信道的负面影响,提高传输可靠性,提升资源利用率,降低系统能耗。

广义平稳(wide-sense stationary):

  • 随机变量的均值不随时间变化:m_h(\tau )=E[h(\tau ;t)]
  • 随机信号相关函数不随时间变化,仅与时间差相关:\phi _h(\tau _1,\tau _2;\Delta t)=\frac{1}{2}E[h^*(\tau _1;t)h^*(\tau _2;t+\Delta t)]

非相干散射 (uncorrelated scattering):

在统计意义上,不同多径统计量不相关,如幅度和相位:\phi _h(\tau _1,\tau _2;\Delta t)=\phi _h(\tau _1;\Delta t)\delta (\tau _2-\tau _1)

多径衰落信道的特性:延迟功率谱可以是离散的,也可以是连续的;

信道的相干带宽:多径扩展的倒数是信道的相干带宽的度量,信道冲激响应保持不变的频率宽度;

相干带宽: 该频率范围内,两个频率分量的信道冲激响应有强相关性,B_c\approx \frac{1}{\tau _d},其中\tau _d为多径时延;

相干时间,单个频点的冲激响应保持不变的时间;

相干时间:信道冲激响应维持不变 (输入信号不变,输出信号不变) 的时间间隔,并统计其平均值,T_c\approx \frac{1}{f_d},其中f_d为多普勒频移。

散射函数是描述多径衰落信道最常用的函数;

问:频率选择性衰落是快衰落信道,这种说法对吗? 为什么?

答:错误,频率选择性衰落与多径时延扩展相关,此时信号带宽大于信道相干带宽;快衰落与多普勒扩展相关,此时符号周期大于信道相干时间。

:一个物理信道可能是频率选择信道,也可能是频率非选择信道,这个说法对吗?为什么?

: 正确

信道是否为频率选择信道,取决于传输信号带宽Bs和信道相干带宽Bc。物理传输信道确定,则信道相干带宽保持不变,但信号带宽会发生改变。

当该信道传输宽带信号时,Bs >Bc,Ts <Tc,则信道为频率选择信道,如下图;

频率选择性衰落

当该信道传输窄带信号时, Bs <Bc,Ts> Tc,则信道为频率非选择信道,如下图:

平坦衰落

常用的小尺度衰落模型有Rayleigh Fading和Rician Fading;

小尺度衰落是无线信道非常重要的特性,是无线传输质量的决定因素之一;

小尺度衰落主要包括多径时延扩展(时域扩展)和多普勒频移(频域扩展);

根据频域和时域不同的特性,无线信道可以分为:平坦衰落信道和频率选择性信道;慢衰落信道和快衰落信道。

WSSUS信道是Wide Sense Stationary Uncorrelated Scattering:广义平稳非相关散射信道

如果一个 WSSUS 信道进一步受瑞利衰落,则该信道为高斯 WSSUS 信道,即 GWSSUS 信道。

Rayleigh fading 的产生:在无线通信信道中,由于信号进行多径传播达到接收点处的场强来自不同传播的路径,各条路径延时时间是不同的,而各个方向分量波的叠加,又产生了驻波场强,从而形成信号快衰落称为瑞利衰落;

Rician fading 的产生:如果收到的信号中除了经反射折射散射等来的信号外, 还有从发射机直接到达接收机 (如从卫星直接到达地面接收机)的信号,那么总信号的强度服从分布莱斯, 故称为莱斯衰落。

2.无线信道小尺度衰落主要包含哪两种?

答:主要分为多径时延扩展和多普勒频移两种原因造成,有瑞利和莱斯两种衰落模型。频率选择性衰落会导致符号间干扰,平坦衰落不会。快衰落会使单个符号持续时间内信号发生变化,而慢衰落不会。

3.平坦衰落信道就是慢衰落信道。这个说法对吗?为什么?

答:不对,前者是多径的相干带宽大于信号带宽,信号各频段有同样的衰落;后者是多普勒相干时间大于符号周期,信号发生变化。

4.Rayleigh 衰落信道就是多径信道。这个说法对吗?为什么?

答:不对,Ravleigh 衰落信道模型是不可分辨多径信道,而一般的多径信道是可分辨的。Rayleigh 衰落信道模型是一种无直射传播路径的平坦衰落信号型,利用中心极限定理,将信道影响分解为不相关的两个高斯随机变量。

5.无线信道小尺度衰落时延互功率谱函数的物理意义是什么?

答:时延互功率谱函数中\phi _H(\Delta f,\Delta t)为信道h(,t)关于时延傅里叶变换函数h(τ,t)的自相关,也是时延互功率密度函数\phi _h(\tau ,\Delta t) 关于时延的傅里叶变换;\phi _H(\Delta f,\Delta t)仅与时间差和频率差相关,可用于分析信道特性,如评估信道频率相干性和时间相干性;\phi _H(\Delta f,0)分析相干带宽,图中▲f=1/Tm为相干带宽,Tm 为多径时延。▲f范围内的频率信道冲激响应,h(τ,t)具有强相关性。

6.请给出GWSSUS信道的定义

答:信道冲激响应函数h(τ,t)在时域为广义平稳,时延上为非相干散射。当信号发送时间t和传播时延τ确定,h(τ,t)统计特性服从Rayleigh Fading

7.请给出Rayleigh Fading瑞利衰落的定义

答:接收机接收360°各向无差别的多个随机信号,其中无直射径信号,“该场景的小尺度衰落服从Rayleigh Fading,信道冲激响应h服从为零均值的复高斯分布;信道h =x +jy在cos(I路)方向的衰减x服从高斯分布N(0,\sigma ^{2}),h在sin(Q路)方向的衰减y服从高斯分布N(0,\sigma ^{2})

8.请给出Rician Fading莱斯衰落的定义

答:接收机接收具有方向性的多个信号,其中有直射径信号,该场景的小尺度衰落信道为Rician Fading;信道冲激响应h服从非零均值的复高斯分布;信道h = x + jy在cos(l路)方向的衰减x服从高斯分布N(m_x,\sigma ^{2}),h在sin(Q路)方向的衰减y服从高斯分布N(m_x,\sigma ^{2})

9.请给出调制的定义,解释为何无线通信系统需要调制

答:用信号源的信息改变高频信号参数,使信号源变为适用于信道传输的形式,该过程称为调制
调制能使信号适用于信道传输 (可靠性),传输多路基带信号 (有效性)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/308131.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Sentinel限流熔断

官网&#xff1a;https://sentinelguard.io/zh-cn/docs/introduction.html github文档&#xff1a;https://github.com/alibaba/Sentinel/wiki Sentinel 是一款面向分布式服务架构的轻量级流量控制组件&#xff0c;主要以流量为切入点&#xff0c;从流量控制、 熔断降级 、系…

javaweb基础----JDBC、servlet(二)

一、连接数据库 在昨天的基础上&#xff0c;现在我想来实现前后端以及数据库的连接。 CSDNhttps://mp.csdn.net/mp_blog/creation/editor/135388510?spm1001.2101.3001.4503在cn2包下创建2个类&#xff0c;一个登录界面login&#xff0c;还有一个实现登录过程的loginServlet…

CST—EMC(电磁兼容)仿真及分析工具

背景概述 随着汽车电子的发展特别是新能源互联网汽车的兴起&#xff0c;整车的EMC环境越来越恶劣&#xff0c;传统的EMC设计面临着设计阶段盲目性强、调试测试阶段工作量大、整改阶段重复性高等诸多挑战&#xff0c;需要通过EMC仿真来解决上述问题。EMC仿真贯穿产品开发全周期&…

40-特殊运算符delete,new,.getDate,.setDate,运算符优先级

1.delete删除. 数组 // 可以删除数组元素&#xff0c;可以删除对象键值对// 删除数组的值&#xff0c;数组长度保持不变// 删掉的值变成emptyvar arr [1,2,3,4,5];delete arr[0];console.log(arr); 对象 var obj {"a":"aa","b":"bb&quo…

Xcalibur软件Qual Brower程序的使用

找到Qual Brower&#xff1a;在System>Program里 打开采集的数据文件*.RAW&#xff0c;软件界面主窗口能查看色谱图和质谱图&#xff1a; 1、图形的放大和拷贝、色谱中查看峰的质谱信息&#xff1a; 点亮如图图像右上角的按钮&#xff0c;可以激活该图形并进行操作&#x…

AI Agent落地先行者实在智能:2023人工智能领军者、百强、TOP30揭榜

实在智能连登三榜&#xff01; 【2023年十佳人工智能行业领军人物】 【2023年度人工智能领域创新企业】 【2023年度最具投资价值企业】 喜大普奔&#xff01;近期&#xff0c;国内科技行业颇具含金量的三张榜单接连发布&#xff0c;实在智能皆榜上有名&#xff0c;“2023「…

WPF真入门教程26--项目案例--欧姆龙PLC通讯工具

1、案例介绍 前面已经完成了25篇的文章介绍&#xff0c;概括起来就是从0开始&#xff0c;一步步熟悉了wpf的概念&#xff0c;UI布局控件&#xff0c;资源样式文件的使用&#xff0c;MVVM模式介绍&#xff0c;命令Command等内容&#xff0c;这节来完成一个实际的项目开发&#…

C++类和对象(万字超详细讲解!!!)

文章目录 前言1.面向过程和面向对象区别2.类的基本概念2.1 类的引入2.2 类的定义2.3 类成员变量的命名规则2.4 类的访问限定符2.5 类的封装2.6 类的作用域2.7 类的实例化 3.类对象模型3.1 如何计算类对象的大小3.2 对齐规则 4.this指针4.1 this指针的引出4.2 this指针的特性4.3…

Python - 深夜数据结构与算法之 Two-Ended BFS

目录 一.引言 二.双向 BFS 简介 1.双向遍历示例 2.搜索模版回顾 三.经典算法实战 1.Word-Ladder [127] 2.Min-Gen-Mutation [433] 四.总结 一.引言 DFS、BFS 是常见的初级搜索方式&#xff0c;为了提高搜索效率&#xff0c;衍生了剪枝、双向 BFS 以及 A* 即启发式搜索…

动手学深度学习-卷积神经网络

卷积神经网络 在前面的章节中&#xff0c;我们遇到过图像数据。这种数据的每个样本都由一个二维像素网格组成&#xff0c;每个像素可能是一个或者多个数值&#xff0c;取决于是黑白还是彩色图像。到目前为止&#xff0c;我们处理这类结构丰富的数据方式还不够有效。我们仅仅通…

【web缓存】nginx和CDN应用

目录 一、代理的工作机制 二、代理服务器的概念 三、代理服务器的作用 四、常用的代理服务器 五、nginx缓存代理部署 步骤一&#xff1a;首先脚本完成三台nginx的部署 步骤二&#xff1a;在两个后端原始服务器上分别创建测试页面 步骤三&#xff1a;完成nginx缓存服务器…

RedisTemplate详解

一、SpringDataRedis简单介绍及引入 SpringData是Spring中数据操作的模块&#xff0c;包括对各种数据库的集成&#xff0c;其中对Redis的集成模块就叫SpringDataRedis 官网地址&#xff1a;https://spring.io/projects/spring-data-redis 1.1 特点&#xff1a; 提供了对不同…

观成科技-加密C2框架EvilOSX流量分析

工具简介 EvilOSX是一款开源的&#xff0c;由python编写专门为macOS系统设计的C2工具&#xff0c;该工具可以利用自身释放的木马来实现一系列集成功能&#xff0c;如键盘记录、文件捕获、浏览器历史记录爬取、截屏等。EvilOSX主要使用HTTP协议进行通信&#xff0c;通信内容为特…

公司新来的同事给出了if-else优化的8种方案

我们日常开发的项目中&#xff0c;如果代码中存在大量的if-else语句&#xff0c;阅读起来非常的折磨&#xff08;直接劝退&#xff09;&#xff0c;维护起来也很难&#xff0c;也特别容易出问题。比如说以下&#xff1a; 接下来&#xff0c;本文介绍我们常使用的8种方法去优化…

xinput1_4.dll缺失了怎么办?快速修复xinput1_4.dll文件的方法指南

在快速发展的数字时代&#xff0c;电子设备尤其是电脑成为了我们生活工作中必不可少的工具。然而&#xff0c;在使用过程中&#xff0c;我们可能会遇到各式各样的技术问题&#xff0c;其中一个常见问题是系统提示缺少 xinput1_4.dll文件。这个错误通常会在你尝试运行一个游戏或…

EF Core 在实际开发中,如何分层?

前言&#xff1a;什么是分层&#xff1f; 分层就是将 EF Core 放在单独的项目中&#xff0c;其它项目如 Asp.net core webapi 项目引用它这样的好处是解耦和项目职责的清晰划分&#xff0c;并且可以重用 EF Core 项目但是也会数据库迁移变得复杂起来 Step by step 步骤 创建一…

linux 安装 reids并使用Windows测试结果

要安装两个软件 Windows端安装下面的软件连接虚拟机中的redis Another Redis DeskTop Manager 安装和使用_another redis desktop怎么连接-CSDN博客 redis安装 查找可用版本 选择安装最多点赞的一个 安装完成后创建redis容器 docker run -t --name redis -p 6379:6379 -d r…

这6个设计小白学习网站,海量免费学习教程!

划到最后“阅读原文”——领取工具包&#xff08;超过1000工具&#xff0c;免费素材网站分享和行业报告&#xff09; Hi&#xff0c;我是胡猛夫~&#xff0c;专注于分享各类价值网站、高效工具&#xff01; ​更多资源&#xff0c;更多内容&#xff0c;欢迎交流&#xff01;公…

3d模型显示不出来?3d不显示全模型---模大狮模型网

如果3D模型在显示时不完整或者无法显示&#xff0c;可能有几个原因导致&#xff1a; 缩放问题&#xff1a;检查一下模型的缩放是否正确。有时候模型的缩放比例可能非常大或非常小&#xff0c;导致模型无法正确显示。尝试调整模型的缩放值&#xff0c;使其适合场景。 材质问题&…