工业机器人运动学与Matlab正逆解算法学习笔记(用心总结一文全会)(二)

文章目录


CSDN提示我字数太多,一篇发不下,只好拆分开

关于

  • 标准DH模型
  • 改进DH模型
  • 机器人正运动学

的相关内容详见前一篇文章:

→→→【工业机器人运动学与Matlab正逆解算法学习笔记(用心总结一文全会)(一)】

❤ 2023.6.19 ❤

在这里插入图片描述

机器人逆运动学

※ 代数解、几何解,解析解(封闭解)、数值解的含义与联系

说起来我刚碰到这几个概念的时候还是挺晕的,和别人交流之后发现晕的不止我一个,经常有人把概念搞混、搞错。

下面有请ChatGPT先来回答一下

在这里插入图片描述

然后我总结一下

代数解几何解都属于解析解(封闭解),他们的特点是可以列出具体的方程,求得的结果是精确的。不一样的地方是,代数解是根据矩阵的特性,通过特定元素相等的方法建立方程组,求解出未知数;而几何解是通过机器人的几何关系建立方程组,求解未知数。

只有特定构型的机器人存在解析解,不过好在我们平时用到的机器人大多数都是特定构型的。

数值解与解析解相对应,特点是运算过程靠迭代,求得的结果是近似解。他适用于所有机器人,包括特殊构型和一般构型,大多在不存在解析解的机器人上使用。


针对ZK-500机器人,因为属于后三轴交于一点的特殊构型,所以这里使用解析法求机器人逆解。

首先将位姿描述矩阵写成如下形式

6 0 T = [ n x o x a x p x n y o y a y p y n z o z a z p z 0 0 0 1 ] = 1 0 T ( θ 1 )   2 1 T ( θ 2 )   3 2 T ( θ 3 )   4 3 T ( θ 4 )   5 4 T ( θ 5 )   6 5 T ( θ 6 ) {_6^0}T=\left[\begin{matrix}n_x&o_x&a_x&p_x\\n_y&o_y&a_y&p_y\\n_z&o_z&a_z&p_z\\0&0&0&1\\\end{matrix}\right]={_1^0}T\left(\theta_1\right)\ _2^1T\left(\theta_2\right)\ _3^2T\left(\theta_3\right)\ _4^3T\left(\theta_4\right)\ _5^4T\left(\theta_5\right)\ _6^5T\left(\theta_6\right) 60T= nxnynz0oxoyoz0axayaz0pxpypz1 =10T(θ1) 21T(θ2) 32T(θ3) 43T(θ4) 54T(θ5) 65T(θ6)

○ 代数解求 θ 1 \theta_1 θ1 θ 2 \theta_2 θ2 θ 3 \theta_3 θ3

※参考资料

→→→【MD-H模型运动学正解、逆解及姿态角的解算验证】
这真是个宝藏作者了

→→→《机器人学导论》(John J Craig)


· 求解 θ 1 \theta_1 θ1

首先将上式中包含 θ 1 \theta_1 θ1的部分移动到方程的左边

[ 1 0 T ( θ 1 ) ] − 1   6 0 T = 2 1 T ( θ 2 )   3 2 T ( θ 3 )   4 3 T ( θ 4 )   5 4 T ( θ 5 )   6 5 T ( θ 6 ) {\left[{_1^0}T\left(\theta_1\right)\right]^{-1}}\ _6^0T={_2^1}T\left(\theta_2\right)\ _3^2T\left(\theta_3\right)\ _4^3T\left(\theta_4\right)\ _5^4T\left(\theta_5\right)\ _6^5T\left(\theta_6\right) [10T(θ1)]1 60T=21T(θ2) 32T(θ3) 43T(θ4) 54T(θ5) 65T(θ6)

1 0 T {_1^0}T 10T求逆,等式写成如下形式

[ c 1 s 1 0 0 − s 1 c 1 0 0 0 0 1 − d 1 0 0 0 1 ] [ n x o x a x p x n y o y a y p y n z o z a z p z 0 0 0 1 ] = 6 1 T \left[\begin{matrix}c_1&s_1&0&0\\-s_1&c_1&0&0\\0&0&1&-d_1\\0&0&0&1\\\end{matrix}\right]\left[\begin{matrix}n_x&o_x&a_x&p_x\\n_y&o_y&a_y&p_y\\n_z&o_z&a_z&p_z\\0&0&0&1\\\end{matrix}\right]={_6^1}T c1s100s1c100001000d11 nxnynz0oxoyoz0axayaz0pxpypz1 =61T

求解出 6 1 T {_6^1}T 61T后,通过观察等式两边的矩阵,令元素(2,4)相等得到

− s 1 p x + c 1 p y = 0 -s_1p_x+c_1p_y=0 s1px+c1py=0


  • 【这个方程是怎么得到的】

这个求解过程内容比较多,我姑且用matlab算了一下。。。

  • 等式左边矩阵(每个方括号代表一行)
[nx*cos(Q1) + ny*sin(Q1), 
 ox*cos(Q1) + oy*sin(Q1), 
 ax*cos(Q1) + ay*sin(Q1), 
 px*cos(Q1) + py*sin(Q1)]
 
[ny*cos(Q1) - nx*sin(Q1), 
 oy*cos(Q1) - ox*sin(Q1), 
 ay*cos(Q1) - ax*sin(Q1), 
 py*cos(Q1) - px*sin(Q1)]
 
[nz,oz,az,pz - d1]

[0,0,0,1]

  • 等式右边矩阵(每个方括号代表一行)
[- cos(Q6)*(sin(Q2 + Q3)*sin(Q5) - cos(Q2 + Q3)*cos(Q4)*cos(Q5)) - cos(Q2 + Q3)*sin(Q4)*sin(Q6),   
 sin(Q6)*(sin(Q2 + Q3)*sin(Q5) - cos(Q2 + Q3)*cos(Q4)*cos(Q5)) - cos(Q2 + Q3)*cos(Q6)*sin(Q4), 
 sin(Q2 + Q3)*cos(Q5) + cos(Q2 + Q3)*cos(Q4)*sin(Q5), 
 a1 + a3*cos(Q2 + Q3) + d4*sin(Q2 + Q3) + a2*cos(Q2)]
 
[- cos(Q4)*sin(Q6) - cos(Q5)*cos(Q6)*sin(Q4),
 cos(Q5)*sin(Q4)*sin(Q6) - cos(Q4)*cos(Q6),
 sin(Q4)*sin(Q5),
 0]
 
[cos(Q6)*(cos(Q2 + Q3)*sin(Q5) + sin(Q2 + Q3)*cos(Q4)*cos(Q5)) - sin(Q2 + Q3)*sin(Q4)*sin(Q6), 
 - sin(Q6)*(cos(Q2 + Q3)*sin(Q5) + sin(Q2 + Q3)*cos(Q4)*cos(Q5)) - sin(Q2 + Q3)*cos(Q6)*sin(Q4), 
 sin(Q2 + Q3)*cos(Q4)*sin(Q5) - cos(Q2 + Q3)*cos(Q5),      
 a3*sin(Q2 + Q3) - d4*cos(Q2 + Q3) + a2*sin(Q2)]
 
[0,0,0,1]
 

果然包含 θ 1 \theta_1 θ1(这里是 Q 1 Q_1 Q1)的元素里面就(2,4)最好算。。。


式中, p x p_x px p y p_y py均为已知,则 θ 1 \theta_1 θ1可表示为:

θ 1 = A t a n 2 ( p y , p x ) \theta_1=\mathrm{Atan2}\left(p_y,p_x\right) θ1=Atan2(py,px)

【!!】注意,这里用的是 A t a n 2 ( ) \mathrm{Atan2}\left(\right) Atan2(),这个函数与 A t a n ( ) \mathrm{Atan}\left(\right) Atan()一样是求反正切,但是他的值域为 ( − π , π ) (-\pi,\pi) (π,π),可以得到角度对应的象限,是增强版的 A t a n ( ) \mathrm{Atan}\left(\right) Atan()。还有需要注意的是输入变量先 p y p_y py p x p_x px
具体可以参考
→→→atan2()
→→→atan2 vs atan

此处存在两组解:
θ 1 = A t a n 2 ( p y , p x ) \theta_1=\mathrm{Atan2}\left(p_y,p_x\right) θ1=Atan2(py,px)
θ 1 ′ = A t a n 2 ( − p y , − p x ) = θ 1 + 180 ∘ \theta_1^\prime=\mathrm{Atan2}\left(-p_y,-p_x\right)=\theta_1+{180}^\circ θ1=Atan2(py,px)=θ1+180

  • matlab代码实现
%% theta1求解
%theta1可能的解有两组
theta1_1=atan2(py,px);
theta1_2=atan2(py,px)+pi;

· 求解 θ 3 \theta_3 θ3

令上面等式中矩阵元素(1,4)和(3,4)左右相等得:

c 1 p x + s 1 p y = a 1 + a 2 c 2 + a 3 c 23 + d 4 s 23 p z − d 1 = a 2 s 2 + a 3 s 23 − d 4 c 23 c_1p_x+s_1p_y=a_1+a_2c_2+a_3c_{23}+d_4s_{23}\\ p_z-d_1=a_2s_2+a_3s_{23}-d_4c_{23} c1px+s1py=a1+a2c2+a3c23+d4s23pzd1=a2s2+a3s23d4c23

等号左右平方和得
m 2 + n 2 = a 2 2 + a 3 2 + d 4 2 + 2 a 2 ( a 3 c 3 + d 4 s 3 ) m^2+n^2=a_2^2+a_3^2+d_4^2+2a_2\left(a_3c_3+d_4s_3\right) m2+n2=a22+a32+d42+2a2(a3c3+d4s3)
其中:
m = c 1 p x + s 1 p y − a 1 n = p z − d 1 m=c_1p_x+s_1p_y-a_1\\ n=p_z-d_1 m=c1px+s1pya1n=pzd1


关于这一步的计算过程:

我用这段代码演示:

syms a1 a2 a3 d4 theta2 theta3

m=a2*cos(theta2)+a3*cos(theta2+theta3)+d4*sin(theta2+theta3);
n=a2*sin(theta2)+a3*sin(theta2+theta3)-d4*cos(theta2+theta3);

k=m^2 + n^2

% 展开表达式为多项式形式
K1 = expand(m^2 + n^2) 
%K = collect(K, [a1 a2 a3 d4]);  

% 化简多项式
K2=simplify(K1)

% 整理多项式的项
k3=collect(K2)

结果:

k =
(a3*cos(theta2 + theta3) + d4*sin(theta2 + theta3) + a2*cos(theta2))^2 + (a3*sin(theta2 + theta3) - d4*cos(theta2 + theta3) + a2*sin(theta2))^2
 
K1 =
a2^2*cos(theta2)^2 + a2^2*sin(theta2)^2 + a3^2*cos(theta2)^2*cos(theta3)^2 + d4^2*cos(theta2)^2*cos(theta3)^2 + a3^2*cos(theta2)^2*sin(theta3)^2 + a3^2*cos(theta3)^2*sin(theta2)^2 + d4^2*cos(theta2)^2*sin(theta3)^2 + d4^2*cos(theta3)^2*sin(theta2)^2 + a3^2*sin(theta2)^2*sin(theta3)^2 + d4^2*sin(theta2)^2*sin(theta3)^2 + 2*a2*a3*cos(theta2)^2*cos(theta3) + 2*a2*a3*cos(theta3)*sin(theta2)^2 + 2*a2*d4*cos(theta2)^2*sin(theta3) + 2*a2*d4*sin(theta2)^2*sin(theta3)
 
K2 =
a2^2 + 2*cos(theta3)*a2*a3 + 2*sin(theta3)*a2*d4 + a3^2 + d4^2
 
k3 =
a2^2 + 2*cos(theta3)*a2*a3 + 2*sin(theta3)*a2*d4 + a3^2 + d4^2

H = ( m 2 + n 2 − a 2 2 − a 3 2 − d 4 2 ) / 2 a 2 H=\left(m^2+n^2-a_2^2-a_3^2-d_4^2\right)/2a_2 H=(m2+n2a22a32d42)/2a2
则可将等式表示为:
a 3 c 3 + d 4 s 3 = H a_3c_3+d_4s_3=H a3c3+d4s3=H

可得:
θ 3 = A t a n 2 ( H , ± a 3 2 + d 4 2 − H 2 ) − A t a n 2 ( a 3 , d 4 ) \theta_3=\mathrm{Atan2}\left(H,\pm\sqrt{a_3^2+d_4^2-H^2}\right)-\mathrm{Atan2}\left(a_3,d_4\right) θ3=Atan2(H,±a32+d42H2 )Atan2(a3,d4)

由于正负号的存在, θ 3 \theta_3 θ3存在两组解。


  • ※ 【关于这一步是怎么来的】

我没有找到转换成反正切的具体的内容,但是这个推导过程可以参考

→→→【acosx+bsinx = c;计算x怎么求】


  • matlab代码实现
%% theta3求解
%theta1的取值已经确定,但是因为theta1有两组可能得解,所以这里实际上m有两组取值,这里只给出一组
m=cos(theta1)*px+sin(theta1)*py-a1; 
n=pz-d1;
H=(m^2+n^2-a2^2-a3^2-d4^2)/(2*a2);
theta3_1=atan2(H,sqrt(a3^2+d4^2-H^2))-atan2(a3,d4);
theta3_2=atan2(H,-sqrt(a3^2+d4^2-H^2))-atan2(a3,d4);

· 求解 θ 2 \theta_2 θ2

关于\theta_2$的求解,我尝试了若干种方法。

♦ 机器人学导论的方法(失败的尝试)

首先,我按照《机器人学导论》(John J Craig)这本教材中记录的方法进行尝试。

众所周知,《机器人学导论》中都是以PUMA560为案例的,而PUMA560的结构与现在常用的工业机器人的构型并不相同(主要是和我研究的机器人不同),所以并不能直接拿来用。这里是参照其步骤进行计算的。

第一步,整理机器人末端位姿描述矩阵的计算式如下

[ 3 0 T ( θ 2 ) ] − 1   6 0 T = 4 3 T ( θ 4 )   5 4 T ( θ 5 )   6 5 T ( θ 6 )   [{_3^0}T\left(\theta_2\right)]^{-1}\ {_6^0}T={_4^3}T\left(\theta_4\right)\ {_5^4}T\left(\theta_5\right)\ {_6^5}T\left(\theta_6\right)\ [30T(θ2)]1 60T=43T(θ4) 54T(θ5) 65T(θ6) 

令等号两边矩阵元素(1,4)和(2,4)相等,得到如下等式
( p z − d 1 ) sin ⁡ ( θ 23 ) − a 1 cos ⁡ ( θ 23 ) − a 2 cos ⁡ ( θ 3 ) + . . . p x cos ⁡ ( θ 1 ) cos ⁡ ( θ 23 ) + p y sin ⁡ ( θ 1 ) cos ⁡ ( θ 23 ) = a 3 ( p z − d 1 ) cos ⁡ ( θ 23 ) + a 1 sin ⁡ ( θ 23 ) + a 2 sin ⁡ ( θ 3 ) − . . . p y cos ⁡ ( θ 1 ) cos ⁡ ( θ 23 ) + p x sin ⁡ ( θ 1 ) cos ⁡ ( θ 23 ) = − d 4 (p_z-d_1)\sin(\theta_{23})-a_1\cos(\theta_{23})-a_2\cos(\theta_3)+...\\p_x\cos(\theta_1)\cos(\theta_{23})+p_y\sin(\theta_1)\cos(\theta_{23})=a_3\\ (p_z-d_1)\cos(\theta_{23})+a_1\sin(\theta_{23})+a_2\sin(\theta_3)-...\\p_y\cos(\theta_1)\cos(\theta_{23})+p_x\sin(\theta_1)\cos(\theta_{23})=-d_4 (pzd1)sin(θ23)a1cos(θ23)a2cos(θ3)+...pxcos(θ1)cos(θ23)+pysin(θ1)cos(θ23)=a3(pzd1)cos(θ23)+a1sin(θ23)+a2sin(θ3)...pycos(θ1)cos(θ23)+pxsin(θ1)cos(θ23)=d4


  • 计算过程如下
syms Q1 Q2 Q3 Q4 Q5 Q6  d1 d4 dt a1 a2 a3  nx ny nz ox oy oz ax ay az px py pz

%ZK-500连杆间齐次变换矩阵
T_01 =[ cos(Q1),   -sin(Q1),    0,      0
        sin(Q1),    cos(Q1),    0,      0
        0,          0,          1,      d1
        0,          0,          0,      1];
T_12 =[ cos(Q2),   -sin(Q2),    0,      a1
        0,          0,         -1,      0
        sin(Q2),    cos(Q2),    0,      0
        0,          0,          0,      1];
T_23 =[ cos(Q3),   -sin(Q3),    0,      a2
        sin(Q3),    cos(Q3),    0,      0
        0,          0,          1,      0
        0,          0,          0,      1];
T_34 =[ cos(Q4),   -sin(Q4),    0,      a3
        0,          0,         -1,     -d4
        sin(Q4),    cos(Q4),    0,      0
        0,          0,          0,      1];
T_45 =[ cos(Q5),   -sin(Q5),    0,      0
        0,          0,          1,      0
       -sin(Q5),   -cos(Q5),    0,      0
        0,          0,          0,      1];
T_56 =[ cos(Q6),   -sin(Q6),    0,      0
        0,          0,         -1,      0
        sin(Q6),    cos(Q6),    0,      0
        0,          0,          0,      1];
T_6t=[  1           0           0       0
        0           1           0       0
        0           0           1       dt
        0           0           0       1];

% 计算T_06和T_16的逆矩阵
T_06=[nx ox ax px;ny oy ay py;nz oz az pz;0 0 0 1];
T_03=T_01*T_12*T_23;
T_36=T_34*T_45*T_56;


% 计算T_01的逆矩阵
T_03_inv = inv(T_03);  

%输出结果并化简
T_left=T_03_inv*T_06;
disp("等式左边矩阵:")
%T_left=simplify(T_left)
T_left
disp("等式右边矩阵:")
simplify(T_36)

结果如下

T_left =
 
[nz*cos(Q2)*sin(Q3) + nz*cos(Q3)*sin(Q2) - nx*cos(Q1)*sin(Q2)*sin(Q3) - ny*sin(Q1)*sin(Q2)*sin(Q3) + nx*cos(Q1)*cos(Q2)*cos(Q3) + ny*cos(Q2)*cos(Q3)*sin(Q1),

 oz*cos(Q2)*sin(Q3) + oz*cos(Q3)*sin(Q2) - ox*cos(Q1)*sin(Q2)*sin(Q3) - oy*sin(Q1)*sin(Q2)*sin(Q3) + ox*cos(Q1)*cos(Q2)*cos(Q3) + oy*cos(Q2)*cos(Q3)*sin(Q1), 

az*cos(Q2)*sin(Q3) + az*cos(Q3)*sin(Q2) - ay*sin(Q1)*sin(Q2)*sin(Q3) + ax*cos(Q1)*cos(Q2)*cos(Q3) + ay*cos(Q2)*cos(Q3)*sin(Q1) - ax*cos(Q1)*sin(Q2)*sin(Q3), 

pz*sin(Q2 + Q3) - d1*sin(Q2 + Q3) - a1*cos(Q2 + Q3) - a2*cos(Q3) + (px*cos(Q1 + Q2 + Q3))/2 + (py*sin(Q1 + Q2 + Q3))/2 + (px*cos(Q2 - Q1 + Q3))/2 - (py*sin(Q2 - Q1 + Q3))/2]

[nz*cos(Q2)*cos(Q3) - nz*sin(Q2)*sin(Q3) - ny*cos(Q2)*sin(Q1)*sin(Q3) - ny*cos(Q3)*sin(Q1)*sin(Q2) - nx*cos(Q1)*cos(Q2)*sin(Q3) - nx*cos(Q1)*cos(Q3)*sin(Q2),

 oz*cos(Q2)*cos(Q3) - oz*sin(Q2)*sin(Q3) - oy*cos(Q2)*sin(Q1)*sin(Q3) - oy*cos(Q3)*sin(Q1)*sin(Q2) - ox*cos(Q1)*cos(Q2)*sin(Q3) - ox*cos(Q1)*cos(Q3)*sin(Q2),

 az*cos(Q2)*cos(Q3) - az*sin(Q2)*sin(Q3) - ax*cos(Q1)*cos(Q2)*sin(Q3) - ax*cos(Q1)*cos(Q3)*sin(Q2) - ay*cos(Q2)*sin(Q1)*sin(Q3) - ay*cos(Q3)*sin(Q1)*sin(Q2), 

pz*cos(Q2 + Q3) - d1*cos(Q2 + Q3) + a1*sin(Q2 + Q3) + a2*sin(Q3) + (py*cos(Q1 + Q2 + Q3))/2 - (px*sin(Q1 + Q2 + Q3))/2 - (py*cos(Q2 - Q1 + Q3))/2 - (px*sin(Q2 - Q1 + Q3))/2]

[
nx*sin(Q1) - ny*cos(Q1),
ox*sin(Q1) - oy*cos(Q1),
ax*sin(Q1) - ay*cos(Q1),
px*sin(Q1) - py*cos(Q1)
]

[0,0,0, 1]
 
等式右边矩阵:
[
cos(Q4)*cos(Q5)*cos(Q6) - sin(Q4)*sin(Q6),
- cos(Q6)*sin(Q4) - cos(Q4)*cos(Q5)*sin(Q6), 
cos(Q4)*sin(Q5),  
a3
]


[                          
cos(Q6)*sin(Q5),                            
-sin(Q5)*sin(Q6),        
-cos(Q5), 
-d4]

[cos(Q4)*sin(Q6) + cos(Q5)*cos(Q6)*sin(Q4),   
cos(Q4)*cos(Q6) - cos(Q5)*sin(Q4)*sin(Q6), 
sin(Q4)*sin(Q5),   
0]
[0, 0, 0, 1]


然后让ChatGPT帮我化简

在这里插入图片描述

最后结果就是这个

(pz - d1)*sin(Q23) - a1*cos(Q23) - a2*cos(Q3) + px*cos(Q1)*cos(Q23) + py*sin(Q1)*cos(Q23)=a3;
(pz - d1)*cos(Q23) + a1*sin(Q23) + a2*sin(Q3) - py*cos(Q1)*cos(Q23) + px*sin(Q1)*cos(Q23)=-d4;

此时等式中未知的只有 s 23 s_{23} s23 c 23 c_{23} c23,将其设为未知数,(理论上)就可以解出来 θ 2 + θ 3 \theta_2+\theta_3 θ2+θ3


m 1 = c 1 p x + s 1 p y − a 1 m 2 = p z − d 1 m 3 = a 3 + a 2 c 3 m_1=c_1p_x+s_1p_y-a_1\\ m_2=p_z-d_1\\ m_3=a_3+a_2c_3 m1=c1px+s1pya1m2=pzd1m3=a3+a2c3

n 1 = − c 1 p y − s 1 p x − d 1 n 2 = a 1 n 3 = − d 4 − a 2 s 3 n_1=-c_1p_y-s_1p_x-d_1\\ n_2=a_1\\ n_3=-d_4-a_2s_3 n1=c1pys1pxd1n2=a1n3=d4a2s3

将方程组整理为
m 1 c 23 + m 2 s 23 = m 3 n 1 c 23 + n 2 s 23 = n 3 m_1c_{23}+m_2s_{23}=m_3\\ n_1c_{23}+n_2s_{23}=n_3 m1c23+m2s23=m3n1c23+n2s23=n3

解得

x = s 23 = ( m 1 n 3 − m 3 n 1 ) / ( m 1 n 2 − m 2 n 1 ) y = c 23 = − ( m 2 n 3 − m 3 n 2 ) / m 1 n 2 − m 2 n 1 ) x=s_{23}=(m_1n_3-m_3n_1)/(m_1n_2-m_2n_1)\\ y=c_{23}=-(m_2n_3-m_3n_2)/m_1n_2-m_2n_1) x=s23=(m1n3m3n1)/(m1n2m2n1)y=c23=(m2n3m3n2)/m1n2m2n1)

于是
θ 23 = A t a n 2 ( y , x ) \theta_{23}=\mathrm{Atan2}(y,x) θ23=Atan2(y,x)

然后再根据 θ 3 \theta_3 θ3的取值得到 θ 2 \theta_2 θ2

【!!??】起来没问题,但是算出来的结果却和预设的值不同,不知道是哪里出了问题,如果有大佬看出来了希望能指点一二。


  • matlab代码实现
m1=cos(theta1)*px+sin(theta1)*py-a1;
m2=pz-d1;
m3=a3+a2*cos(theta3);

n1=-cos(theta1)*py-sin(theta1)*px+pz-d1;
n2=a1;
n3=-d4-a2*sin(theta1);

x = (m1*n3 - m3*n1)/(m1*n2 - m2*n1);
y = -(m2*n3 - m3*n2)/(m1*n2 - m2*n1);

theta23=atan2(y,x)-pi/2;%这里减pi/2因为在DH参数中theta2补偿了pi/2

♦ 参考的文章中的方法(失败的尝试)

也就是前面提到的这篇文章:

→→→【MD-H模型运动学正解、逆解及姿态角的解算验证】

这篇文章中作者没有给出具体的推导过程,只给了matlab代码,代码如下

%theta2
c3=cosd(Theta3);s3=sind(Theta3);
g1=f2-d6*f1;
g2=f3-d6*az;
g3=a4*c3-d4*s3+a3;
Theta2=(atan2(g3,sqrt(g1^2+g2^2-g3^2))-atan2(g2,g1))*180/pi;
————————————————
版权声明:本文为CSDN博主「Vittore-Li」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/Vittore_Li/article/details/123185721

【!】注意,这篇文章作者的DH参数的定义和我是不一样的,我的a1=他的a2,我的a2=他的a3,我的a3=他的a4,另外他的DH模型的连杆的Z轴和我的方向是相反的,不知道会在求解中有什么影响。

我看了半天没看明白这是怎么来的,然后直接运行得到的结果也不正确(在针对我的DH模型做了相应修改后运行的)。

如果有哪个大佬知道作者用的是什么方法希望不吝赐教!(抱拳)


♦ 一个大佬的论文的方法(可以得到正确结果的方法)

是的,就是我前面(上一篇)说的那个大佬的论文,其实我前面的过程基本(或者说全部)也是按照大佬的步骤写的,只是加上了我的理解和验证过程。

大佬就是不一样,用的方法都是我没见过的。。。

机器人末端位置(坐标系6的原点)如下:

p x = a 1 c 1 + a 3 c 1 c 23 + d 4 c 1 s 23 + a 2 c 1 c 2 p y = a 1 s 1 + a 3 s 1 c 23 + d 4 s 1 s 23 + a 2 c 2 s 1 p z = d 1 + a 2 s 2 + a 3 s 23 − d 4 c 23 p_x=a_1c_1+a_3c_1c_{23}+d_4c_1s_{23}+a_2c_1c_2\\ p_y=a_1s_1+a_3s_1c_{23}+d_4s_1s_{23}+a_2c_2s_1\\ p_z=d_1+a_2s_2+a_3s_{23}-d_4c_{23} px=a1c1+a3c1c23+d4c1s23+a2c1c2py=a1s1+a3s1c23+d4s1s23+a2c2s1pz=d1+a2s2+a3s23d4c23

整理可得:

p x c 1 − a 1 = a 3 c 23 + d 4 s 23 + a 2 c 2 p y s 1 − a 1 = a 3 c 23 + d 4 s 23 + a 2 c 2 p z − d 1 = a 2 s 2 + a 3 s 23 − d 4 c 23 \frac{p_x}{c_1}-a_1=a_3c_{23}+d_4s_{23}+a_2c_2\\ \frac{p_y}{s_1}-a_1=a_3c_{23}+d_4s_{23}+a_2c_2\\ p_z-d_1=a_2s_2+a_3s_{23}-d_4c_{23} c1pxa1=a3c23+d4s23+a2c2s1pya1=a3c23+d4s23+a2c2pzd1=a2s2+a3s23d4c23

k 1 = p x c 1 − a 1 k 2 = p z − d 1 k_1=\frac{p_x}{c_1}-a_1 {k_2=p}_z-d_1 k1=c1pxa1k2=pzd1

得到:

k 1 − a 2 c 2 = a 3 c 23 + d 4 s 23 k 2 − a 2 s 2 = a 3 s 23 − d 4 c 23 k_1-a_2c_2=a_3c_{23}+d_4s_{23}\\ k_2-a_2s_2=a_3s_{23}-d_4c_{23} k1a2c2=a3c23+d4s23k2a2s2=a3s23d4c23

求平方和:

a 3 2 + d 4 2 = k 1 2 + k 2 2 + a 2 2 − 2 k 1 a 2 c 2 − 2 k 2 a 2 s 2 a_3^2+d_4^2=k_1^2+k_2^2+a_2^2-2k_1a_2c_2-2k_2a_2s_2 a32+d42=k12+k22+a222k1a2c22k2a2s2

k 3 = ( k 1 2 + k 2 2 + a 2 2 − a 3 2 − d 4 2 ) / 2 a 2 k_3=\left(k_1^2+k_2^2+a_2^2-a_3^2-d_4^2\right)/2a_2 k3=(k12+k22+a22a32d42)/2a2

则:

k 1 c 2 + k 2 s 2 = k 3 k_1c_2+k_2s_2=k_3 k1c2+k2s2=k3
解得:
θ 2 = A t a n 2 ( k 3 , ± k 1 2 + k 2 2 − k 3 2 ) − A t a n 2 ( k 1 , k 2 ) \theta_2=\mathrm{Atan2}\left(k_3,\pm\sqrt{k_1^2+k_2^2-k_3^2}\right)-\mathrm{Atan2}\left(k_1,k_2\right) θ2=Atan2(k3,±k12+k22k32 )Atan2(k1,k2)


  • matlab代码实现
k1=px/cosd(theta(1))-a1;
k2=pz-d1;
k3=(k1^2+k2^2+a2^2-a3^2-d4^2)/(2*a2);

theta2_1=atan2(k3,sqrt(k1^2+k2^2-k3^2))-atan2(k1,k2)-pi/2;
theta2_2=atan2(k3,-sqrt(k1^2+k2^2-k3^2))-atan2(k1,k2)-pi/2;

❤ 2023.6.21 ❤

以上就是用代数解的方法求前三个轴的角度,按照一般流程,这个时候应该求后四个轴了,但是作为一篇总结方法型的文章,我是不满足于只记录一种实现方法的。

在学习了师弟的方法之后,我觉得用集合法解前三个轴应该是更简单的,至少和脑筋急转弯一样的代数法相比更好理解。

○ 几何解求 θ 1 \theta_1 θ1 θ 2 \theta_2 θ2 θ 3 \theta_3 θ3

· 求解 θ 1 \theta_1 θ1

由机器人示意图可知,此构型的机器人,杆1、杆2、杆3组成的机构在同一竖直平面内,同时机器人末端为杆4、杆5、杆6坐标系的共同原点。由此可知,已知机器人末端坐标 ( p x , p y , p z ) \left(p_x,p_y,p_z\right) (px,py,pz)即可求得轴1的转角 θ 1 \theta_1 θ1

在这里插入图片描述
θ 1 = A t a n 2 ( p y , p x ) \theta_1=\mathrm{Atan2}\left(p_y,p_x\right) θ1=Atan2(py,px)

甚至不用考虑多解的情况


· 求解 θ 3 \theta_3 θ3

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/30579.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Unity核心7——2D动画

一、序列帧动画 (一)什么是序列帧动画 ​ 我们最常见的序列帧动画就是我们看的日本动画片,以固定时间间隔按序列切换图片,就是序列帧动画的本质 ​ 当固定时间间隔足够短时,我们肉眼就会认为图片是连续动态的&#…

【Java基础学习打卡11】Path环境变量的配置

目录 前言一、为什么配置环境变量二、如何配置环境变量三、JDK11的环境变量配置总结 前言 本文我们要知道为什么配置环境变量,自己思考不配置环境变量可以吗?JDK 11 如何配置环境变量。 一、为什么配置环境变量 原因很简单,就是方便命令的查…

1.5 掌握Scala内建控制结构(一)

一、条件表达式 (一)语法格式 if (条件) 值1 else 值2 (二)执行情况 条件为真,结果是值1;条件为假,结果是值2。如果if和else的返回结果同为某种类型,那么条件表达式结果也是那种…

【STM32MP135 - ST官方源码移植】第二章:TF-A源码移植教程

STM32MP135 TF-A源码移植教程 一、创建build.sh编译脚本(1)解压tf-a的源码压缩包(2)打补丁,获取stm32mp135的源码(3)设计编译脚本build.sh1、进入tf-a源码:2、创建build.sh脚本文件3…

HTTP协议,带你了解HTTP协议

目录 1、HTTP 协议介绍 2、HTTP 协议的工作过程 HTTP 协议的工作过程可以分为以下几个步骤: 3、Fiddler 抓包工具介绍 3.1 抓包工具的使用 3.2 抓包结果 3.3 抓包工具原理 4、HTTP 协议格式总览 5、HTTP 请求(Request) 5.1 认识 URL…

C#中List<T>的排序相关的使用方法总结

C#中List<>的排序相关的使用方法 list的排序一般使用Sort和LINQ的Orderby方法&#xff0c;本文主要介绍其如何使用。 &#x1f32e;1.Sort和实现Comparable接口 此方式需要类去实现IComparable接口 public class OrderTest {[Test]public void OraderTest(){List<E…

MySQL优化--undo log和redo log的区别

首先我们需要知道两个概念 缓冲池&#xff08;buffer pool&#xff09;:主内存中的一个区域&#xff0c;里面可以缓存磁盘上经常操作的真实数据&#xff0c;在执行增删改查操作时&#xff0c;先操作缓冲池中的数据&#xff08;若缓冲池没有数据&#xff0c;则从磁盘加载并缓存…

(写自己语言的练手级应用)JSON(JavaScript Object Notation) 产生式(BNF)

写自己的开发语言时&#xff0c;很多人都会拿JSON当第一个练习对象 开源net json FJSON 解析工具https://dbrwe.blog.csdn.net/article/details/107611540?spm1001.2014.3001.5502 <json> :: <object> | <array> <object> :: "{" [ <me…

操作系统 复习-计算题

一. 计算题&#xff08;共5题&#xff0c;100分&#xff09; 1.(计算题) 假设有4个进程需要在单CPU上运行&#xff0c;它们的执行时间如下表所示&#xff1a; 进程ID执行时间P18P25P32P44 现在我们需要按照抢占式优先级调度算法来安排这些进程的执行顺序。其中&#xff0c;进…

python代码加密方案

为何要对代码加密&#xff1f; python的解释特性是将py编译为独有的二进制编码pyc 文件&#xff0c;然后对pyc中的指令进行解释执行&#xff0c;但是pyc的反编译却非常简单&#xff0c;可直接反编译为源码&#xff0c;当需要将产品发布到外部环境的时候&#xff0c;源码的保护尤…

基于机器学习的内容推荐算法及其心理学、社会学影响闲谈

基于机器学习的内容推荐算法目前在各类内容类APP中使用的非常普遍。在购物、时尚、新闻咨询、学习等领域&#xff0c;根据用户的喜好&#xff0c;进行较为精准的用户画像与内容推荐。此类算法不但可以较为准确的分析用户的特征&#xff0c;如年龄、性别等&#xff0c;还能通过长…

特征点Features2D类介绍

文章目录 Features2D类介绍1. cv::AgastFeatureDetector2. cv::AKAZE3. cv::BRISK4. cv::FastFeatureDetector5. cv::GFTTDetector6. cv::KAZE7. cv::MSER8. cv::SimpleBlobDetector9. cv::StarDetector10. cv::SIFT11. cv::SURF12. cv::FastFeatureDetector13. cv::AgastFeatu…

最喜爱的编程语言——Python

一、编程语言发展 编程语言&#xff08;programming language&#xff09;可以简单的理解为一种计算机和人都能识别的语言。一种能够让程序员准确地定义计算机所需数据的计算机语言&#xff0c;并精确地定义在不同情况下所应当采取的行动。 编程语言处在不断的发展和变化中&…

【c语言】 -- 详解数组篇

&#x1f4d5;博主介绍&#xff1a;目前大一正在学习c语言&#xff0c;数据结构&#xff0c;计算机网络。 c语言学习&#xff0c;是为了更好的学习其他的编程语言&#xff0c;C语言是母体语言&#xff0c;是人机交互接近底层的桥梁。 本章来学习数据的存储。 让我们开启c语言学…

考虑微网新能源经济消纳的共享储能优化配置(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

C#异步详解

异步编程是指在程序执行过程中&#xff0c;不需要等待某个操作完成&#xff0c;就可以继续执行后续的代码。比如我们开发了一个web页面中有一个上传文件功能&#xff0c;我们上传文件时使用异步操作&#xff0c;就不用等待文件的上传时间&#xff0c;可以先在网页上进行其他操作…

JAVA_HOME变量的详细配置(图文)

用到Java项目的时候&#xff0c;有时候要用到Java_home&#xff0c;这个需要在系统配置中配置一下。如何操作呢&#xff1f;以下为详细的图文步骤。 1&#xff09;打开环境变量的窗口 2&#xff09;打开新建系统变量 3&#xff09;编辑JAVA_HOME 在变量名后输入JAVA_HOME,找到…

Ui自动化测试如何上传文件

前言 实施UI自动化测试的时候&#xff0c;经常会遇见上传文件的操作&#xff0c;那么对于上传文件你知道几种方法呢&#xff1f;今天我们就总结一下几种常用的上传文件的方法&#xff0c;并分析一下每个方法的优点和缺点以及哪种方法效率&#xff0c;稳定性更高 被测HTML代码…

centos直接部署express

centos直接部署express 以下是在CentOS上部署Express应用程序的一般步骤&#xff1a; 1.安装Node.js 在CentOS系统上安装Node.js。可以使用以下命令安装Node.js&#xff1a; sudo yum install nodejs2.安装npm 安装完Node.js后&#xff0c;还需要安装npm&#xff08;Node.…

Python爬虫被封ip解决方案

在使用 Python 程序进行网络爬虫开发时&#xff0c;可能因以下原因导致被封 IP 或封禁爬虫程序&#xff1a; 1、频繁访问网站 爬虫程序可能会在很短的时间内访问网站很多次&#xff0c;从而对目标网站造成较大的负担和压力&#xff0c;这种行为容易引起目标网站的注意并被封禁…