【深度学习】YOLOv8训练过程,YOLOv8实战教程,目标检测任务SOTA,关键点回归

文章目录

  • 可用资源
  • 资源安装
  • 模型训练(检测)
  • 模型pridict
  • 模型导出

可用资源

https://github.com/ultralytics/ultralytics
在这里插入图片描述
官方教程:https://docs.ultralytics.com/modes/train/

资源安装

更建议下载代码后使用 下面指令安装,这样可以更改源码,如果不需要更改源码就直接pip install ultralytics也是可以的。

pip install -e .

这样安装后,可以直接修改yolov8源码,并且可以立即生效。此图是命令解释:
在这里插入图片描述
安装成功后:
在这里插入图片描述
pip list可以看到安装的包:
在这里插入图片描述

模型训练(检测)

可以重新创建一个新的工程去使用安装好的ultralytics包,这样修改源码可以在別的工程。
在这里插入图片描述
下载一个demo数据集:https://ultralytics.com/assets/coco128.zip

最终文件:
在这里插入图片描述
train_coco.py,我给的绝对路径:

from ultralytics import YOLO

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2"

model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights

# Train the model
model.train(data='/ssd/xiedong/workplace/yolov8_script/coco128.yaml', epochs=100, imgsz=640)

coco128.yaml,这个文件在yolov8的源码中是有的,拉出来改一下,改为绝对路径。

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: /ssd/xiedong/workplace/yolov8_script/coco128  # dataset root dir
train: images/train2017  # train images (relative to 'path') 128 images
val: images/train2017  # val images (relative to 'path') 128 images
test:  # test images (optional)

# Classes
names:
  0: person
  1: bicycle
  2: car
  3: motorcycle
  4: airplane
  5: bus
  6: train
  7: truck
  8: boat
  9: traffic light
  10: fire hydrant
  11: stop sign
  12: parking meter
  13: bench
  14: bird
  15: cat
  16: dog
  17: horse
  18: sheep
  19: cow
  20: elephant
  21: bear
  22: zebra
  23: giraffe
  24: backpack
  25: umbrella
  26: handbag
  27: tie
  28: suitcase
  29: frisbee
  30: skis
  31: snowboard
  32: sports ball
  33: kite
  34: baseball bat
  35: baseball glove
  36: skateboard
  37: surfboard
  38: tennis racket
  39: bottle
  40: wine glass
  41: cup
  42: fork
  43: knife
  44: spoon
  45: bowl
  46: banana
  47: apple
  48: sandwich
  49: orange
  50: broccoli
  51: carrot
  52: hot dog
  53: pizza
  54: donut
  55: cake
  56: chair
  57: couch
  58: potted plant
  59: bed
  60: dining table
  61: toilet
  62: tv
  63: laptop
  64: mouse
  65: remote
  66: keyboard
  67: cell phone
  68: microwave
  69: oven
  70: toaster
  71: sink
  72: refrigerator
  73: book
  74: clock
  75: vase
  76: scissors
  77: teddy bear
  78: hair drier
  79: toothbrush


# Download script/URL (optional)
download: https://ultralytics.com/assets/coco128.zip

即可看到成功训练起来的情况:

Transferred 355/355 items from pretrained weights
Ultralytics YOLOv8.0.119 🚀 Python-3.7.16 torch-1.12.1+cu116 CUDA:0 (NVIDIA A100-PCIE-40GB, 40390MiB)
WARNING ⚠️ Upgrade to torch>=2.0.0 for deterministic training.
yolo/engine/trainer: task=detect, mode=train, model=yolov8n.yaml, data=/ssd/xiedong/workplace/yolov8_script/coco128.yaml, epochs=100, patience=50, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=None, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=0, resume=False, amp=True, fraction=1.0, profile=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, v5loader=False, tracker=botsort.yaml, save_dir=runs/detect/train5

                   from  n    params  module                                       arguments                     
  0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]                 
  1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]                
  2                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]             
  3                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]                
  4                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]             
  5                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]               
  6                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]           
  7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]              
  8                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]           
  9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]                 
 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 12                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]                 
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 15                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]                  
 16                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]                
 17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 18                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]                 
 19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]              
 20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 21                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]                 
 22        [15, 18, 21]  1    897664  ultralytics.nn.modules.head.Detect           [80, [64, 128, 256]]          
YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs

Transferred 355/355 items from pretrained weights
TensorBoard: Start with 'tensorboard --logdir runs/detect/train5', view at http://localhost:6006/
AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n...
AMP: checks passed ✅
train: Scanning /ssd/xiedong/workplace/yolov8_script/coco128/labels/train2017...
train: New cache created: /ssd/xiedong/workplace/yolov8_script/coco128/labels/train2017.cache
albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))
val: Scanning /ssd/xiedong/workplace/yolov8_script/coco128/labels/train2017.cach
Plotting labels to runs/detect/train5/labels.jpg... 
optimizer: AdamW(lr=0.000119, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias(decay=0.0)
Image sizes 640 train, 640 val
Using 8 dataloader workers
Logging results to runs/detect/train5
Starting training for 100 epochs...

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
      1/100      2.55G      1.179      1.595      1.254        127        640: 1
                 Class     Images  Instances      Box(P          R      mAP50  m
                   all        128        929      0.641      0.534      0.612      0.454

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
      2/100      2.54G      1.249      1.534      1.247        209        640: 1
                 Class     Images  Instances      Box(P          R      mAP50  m
                   all        128        929      0.693      0.532      0.632      0.469

训练的参数调整:

KeyValueDescription
modelNonepath to model file, i.e. yolov8n.pt, yolov8n.yaml
dataNonepath to data file, i.e. coco128.yaml
epochs100number of epochs to train for
patience50epochs to wait for no observable improvement for early stopping of training
batch16number of images per batch (-1 for AutoBatch)
imgsz640size of input images as integer or w,h
saveTruesave train checkpoints and predict results
save_period-1Save checkpoint every x epochs (disabled if < 1)
cacheFalseTrue/ram, disk or False. Use cache for data loading
deviceNonedevice to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
workers8number of worker threads for data loading (per RANK if DDP)
projectNoneproject name
nameNoneexperiment name
exist_okFalsewhether to overwrite existing experiment
pretrainedFalsewhether to use a pretrained model
optimizer'auto'optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
verboseFalsewhether to print verbose output
seed0random seed for reproducibility
deterministicTruewhether to enable deterministic mode
single_clsFalsetrain multi-class data as single-class
rectFalserectangular training with each batch collated for minimum padding
cos_lrFalseuse cosine learning rate scheduler
close_mosaic0(int) disable mosaic augmentation for final epochs
resumeFalseresume training from last checkpoint
ampTrueAutomatic Mixed Precision (AMP) training, choices=[True, False]
fraction1.0dataset fraction to train on (default is 1.0, all images in train set)
profileFalseprofile ONNX and TensorRT speeds during training for loggers
lr00.01initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
lrf0.01final learning rate (lr0 * lrf)
momentum0.937SGD momentum/Adam beta1
weight_decay0.0005optimizer weight decay 5e-4
warmup_epochs3.0warmup epochs (fractions ok)
warmup_momentum0.8warmup initial momentum
warmup_bias_lr0.1warmup initial bias lr
box7.5box loss gain
cls0.5cls loss gain (scale with pixels)
dfl1.5dfl loss gain
pose12.0pose loss gain (pose-only)
kobj2.0keypoint obj loss gain (pose-only)
label_smoothing0.0label smoothing (fraction)
nbs64nominal batch size
overlap_maskTruemasks should overlap during training (segment train only)
mask_ratio4mask downsample ratio (segment train only)
dropout0.0use dropout regularization (classify train only)
valTruevalidate/test during training

模型pridict

https://docs.ultralytics.com/modes/predict/

import cv2
from ultralytics import YOLO
import os

os.environ["CUDA_VISIBLE_DEVICES"] = "2"

import matplotlib.pyplot as plt

img = cv2.imread("img.png")
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

img_1 = cv2.imread("img_1.png")
img_1 = cv2.cvtColor(img_1, cv2.COLOR_BGR2RGB)

model = YOLO('yolov8n.yaml').load('yolov8n.pt')

inputs = [img, img_1]  # list of numpy arrays
results = model(inputs)  # list of Results objects

for img,result in zip(inputs, results):
    boxes = result.boxes  # Boxes object for bbox outputs
    masks = result.masks  # Masks object for segmentation masks outputs
    probs = result.probs  # Class probabilities for classification outputs
 

模型导出

https://docs.ultralytics.com/modes/export/#arguments

from ultralytics import YOLO

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2"

model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights

# Export the model
model.export(format='onnx')

导出成功:

                   from  n    params  module                                       arguments                     
  0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]                 
  1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]                
  2                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]             
  3                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]                
  4                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]             
  5                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]               
  6                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]           
  7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]              
  8                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]           
  9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]                 
 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 12                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]                 
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 15                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]                  
 16                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]                
 17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 18                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]                 
 19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]              
 20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 21                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]                 
 22        [15, 18, 21]  1    897664  ultralytics.nn.modules.head.Detect           [80, [64, 128, 256]]          
YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs

Transferred 355/355 items from pretrained weights
Ultralytics YOLOv8.0.119 🚀 Python-3.7.16 torch-1.12.1+cu116 CPU
YOLOv8n summary (fused): 168 layers, 3151904 parameters, 0 gradients, 8.7 GFLOPs

PyTorch: starting from yolov8n.yaml with input shape (1, 3, 640, 640) BCHW and output shape(s) (1, 84, 8400) (0.0 MB)

ONNX: starting export with onnx 1.14.0 opset 10...
ONNX: export success ✅ 10.7s, saved as yolov8n.onnx (12.2 MB)

Export complete (28.4s)
Results saved to /ssd/xiedong/workplace/yolov8_script
Predict:         yolo predict task=detect model=yolov8n.onnx imgsz=640 
Validate:        yolo val task=detect model=yolov8n.onnx imgsz=640 data=None 
Visualize:       https://netron.app

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/30424.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C高级 day37

1、编写一个名为myfirstshell.sh的脚本&#xff0c;它包括以下内容。 1、包含一段注释&#xff0c;列出您的姓名、脚本的名称和编写这个脚本的目的 2、和当前用户说“hello 用户名” 3、显示您的机器名 hostname 4、显示上一级目录中的所有文件的列表 5、显示变量PATH和HOME的值…

uniapp实现应用wgt资源热更新

APP更新一般有两种形式 1、整包更新&#xff0c;通过hbuliderx提供的在线云打包就属于整包更新&#xff0c;属于全量更新&#xff0c;缺点就是打包时间长、要重新走市场审核。费时 2、wgt资源包热更新&#xff0c;通过hbuliderx打wgt包 &#xff0c;速度快&#xff0c;能在应用…

28.vite

目录 1 一些概念 1.1 单页面应用程序SPA 1.2 vite 2 初始化vite项目 3 项目中的文件 1 一些概念 1.1 单页面应用程序SPA 单页面应用程序是只有一个页面的前端&#xff0c;切换页面通过前端路由来切换 特点如下 实现了前后端分离&#xff0c;后端仅出接口&#…

域名解析详解

域名解析 记录类型&#xff1a; 提示&#xff1a; 将域名指向云服务器&#xff0c;选择 A&#xff1b; 将域名指向另一个域名&#xff0c;选择 CNAME&#xff1b; 建立邮箱选择 MX&#xff0c;根据邮箱服务商提供的 MX 记录填写。 记录类型解释A用来指定域名的 IPv4 地址&…

优思学院|六西格玛倡导者与项目赞助人是什么角色?有何区别?

倡导者&#xff08;Champion&#xff09;和项目赞助人&#xff08;Sponsor&#xff09;在正式的六西格玛的组织架构中是两个不同的角色&#xff0c;所以希望在这篇文章中解释一下两个角色的区别。 倡导者&#xff08;Champion&#xff09;是负责组织竞争力和增长的董事和高管&…

C#提升(一、泛型)

一、什么是泛型 泛型&#xff0c;即“参数化类型” 我们来看以下代码&#xff0c;目的很明确&#xff0c;就是显示参数类型&#xff0c;这种类似的代码或者说只有参数类型不同&#xff0c;但是功能相同时&#xff0c;我们如何让代码写的更优雅&#xff1f; 在泛型没有出现的…

Android11 DNS解析流程

Android11 DNS解析 1. DNS解析概念 ​ DNS的全称是domain name system&#xff0c;即域名系统。主要目的是将域名解析为IP地址&#xff0c;域名是方便用户记忆&#xff0c;但网络传输中源目地址使用IP地址来进行标识的&#xff0c;所以Android中的网络应用程序在发起http请求…

Python(request)爬虫有多强大?

requests是Python中的一种HTTP客户端库&#xff0c;用于发送HTTP请求并获取服务器响应。使用requests库可以轻松地进行常见的HTTP操作&#xff0c;如GET、POST、PUT、DELETE等&#xff0c;支持HTTPS和HTTP连接以及摘要验证、基本认证等身份验证方式。 因此&#xff0c;Python的…

阿里云创建ALB_Ingress

阿里云参考文档 1、编写alb AlbConfig创建文档 rootbiking-pre-middleware:~/alb# cat ingress-alb.yaml apiVersion: alibabacloud.com/v1 kind: AlbConfig metadata: #alb名称name: ingress-alb spec:config:name: ingress-albaddressType: InternetzoneMappings:# 两个交换…

ESP32学习之定时器和PWM

一.定时器代码如下&#xff1a; #include <Arduino.h>hw_timer_t *timer NULL; int interruptCounter 0;// 函数名称&#xff1a;onTimer() // 函数功能&#xff1a;中断服务的功能&#xff0c;它必须是一个返回void&#xff08;空&#xff09;且没有输入参数的函数 //…

Redis 哨兵模式

哨兵模式 自动选举 Redis 主服务器&#xff08;当主服务器宕机时&#xff09; 在 Redis2.8 之前&#xff0c;采用手动配置主从机的形式&#xff08;会导致一段时间服务不可用&#xff09; Redis2.8 之后&#xff0c;Redis正是提供了 Sentinel&#xff08;哨兵&#xff09;来解…

逆向Android开发工程,抓包!抓包!学习哪里?

抓包是什么&#xff1f; 在Android逆向工程中&#xff0c;抓包是一项重要的技术&#xff0c;用于获取手机应用程序与服务器之间的通信数据。通过抓包&#xff0c;可以分析应用程序的网络请求&#xff0c;获取请求的URL、参数、响应数据等信息&#xff0c;对应用程序的行为进行…

Python编程入门基础及高级技能、Web开发、数据分析和机器学习与人工智能

文章目录 入门基础安装 Python 环境&#xff0c;选择一个 IDE&#xff0c;如 PyCharm、VSCode等。学习基本语法&#xff1a;变量、数据类型、条件语句、循环语句、函数、异常处理等。熟悉标准库&#xff1a;常用模块、内置函数等。学习基本的面向对象编程&#xff08;OOP&#…

Rust in Action笔记 第六章 内存

Option<T>类型在Rust中使用了空指针优化&#xff08;null pointer optimization&#xff09;来保证该类型在编译后的二进制文件中占用0个字节。None变量是通过一个空指针null pointer来表示&#xff1b;内存地址、指针、引用的区别&#xff0c;内存地址是指在内存中的一个…

【kubernetes】Etcd集群部署与验证

前言:二进制部署kubernetes集群在企业应用中扮演着非常重要的角色。无论是集群升级,还是证书设置有效期都非常方便,也是从事云原生相关工作从入门到精通不得不迈过的坎。通过本系列文章,你将从虚拟机准备开始,到使用二进制方式从零到一搭建起安全稳定的高可用kubernetes集…

基于OpenMV的自动驾驶智能小车模拟系统

一、项目简介 基于机器视觉模块OpenMV采集车道、红绿灯、交通标志等模拟路况信息&#xff0c;实现一辆能车道保持、红绿灯识别、交通标志识别、安全避障以及远程WiFi控制的多功能无人驾驶小车。 赛道规格&#xff1a; 1、编程所需软件&#xff1a; OpenMV&#xff1a;使用Op…

Python自动化测试框架:Pytest和Unittest的区别

pytest和unittest是Python中常用的两种测试框架&#xff0c;它们都可以用来编写和执行测试用例&#xff0c;但两者在很多方面都有所不同。本文将从不同的角度来论述这些区别&#xff0c;以帮助大家更好地理解pytest和unittest。 1. 原理 pytest是基于Python的assert语句和Pytho…

Git第二章、多人协作

一、多人协作一 目前&#xff0c;我们所完成的工作如下&#xff1a; • 基本完成 Git 的所有本地库的相关操作&#xff0c;git基本操作&#xff0c;分支理解&#xff0c;版本回退&#xff0c;冲突解决等等 • 申请码云账号&#xff0c;将远端信息clone到本地&#xff0c;以及推…

一种基于目标的可解释的自动驾驶预测和规划策略

摘要&#xff1a; 本文介绍了一种通过理性逆向规划进行目标识别和多模态轨迹预测的方法。通过将目标识别与MCTS 计划相结合&#xff0c;为自车生成优化计划。 最近炒得比较火的影子模式实际就是在通过数据收集的方式不断模拟自动驾驶系统按照人类驾驶习惯实现人之间的交互过程…

Qt 中动态加载窗口(C++)

在编程中&#xff0c;我经常会遇见要根据用户触发按钮&#xff0c;动态生成窗口的情况。在此有两种方法可以动态生成窗口&#xff1a;一&#xff1a;直接在槽函数中调用窗口类。二&#xff1a;将 **.ui 添加到资源文件&#xff0c;通过 QUiLoader 加载。 现将两种方法介绍如下…