理论U3 决策树

文章目录

  • 一、决策树算法
    • 1、基本思想
    • 2、构成
      • 1)节点
      • 3)有向边/分支
    • 3、分类步骤
      • 1)第1步-决策树生成/学习、训练
      • 2)第2步-分类/测试
    • 4、算法关键
  • 二、信息论基础
    • 1、概念
    • 2、信息量
    • 3、信息熵:
  • 二、ID3 (Iterative Dichotomiser 3)算法
    • 1、基本思想:
    • 2、熵引入
      • 1)经验熵
      • 2)条件熵
      • 3)经验条件熵
      • 4)信息增益(information gain)
    • 3、算法
    • 4、算法案例
    • 5、算法特点
  • 三、ID3算法问题
    • 1、 属性筛选度量标准
    • 2、 剪枝处理
      • 1)问题
      • 2)解决
      • 3)案例
    • 3、 连续值处理
    • 4、 缺失值处理
    • 5、不同代价属性的处理

一、决策树算法

1、基本思想

基本思想:采用自顶向下的递归方法,(以信息熵为度量)构造一棵(熵值下降最快的)树,(到叶子节点处的熵值为零)此时每个叶节点中的实例都属于同一类

2、构成

决策树是一种树型结构,由结点和有向边组成

1)节点

  1. 内部结点表示一个属性或特征
  2. 叶结点代表一种类别

3)有向边/分支

分支代表一个测试输出

3、分类步骤

1)第1步-决策树生成/学习、训练

利用训练集建立(并精化)一棵决策树,建立决策树模型。这个过程实际上是一个从数据中获取知识,进行机器学习的过程

step 1:选取一个属性作为决策树的根结点,然后就这个属性所有的取值创建树的分支。
step 2:用这棵树来对训练数据集进行分类:

  1. 如果一个叶结点的所有实例都属于同一类,则以该类为标记标识此叶结点。
  2. 如果所有的叶结点都有类标记,则算法终止
    step 3:否则,选取一个从该结点到根路径中没有出现过的属性为标记标识该结点,然后就这个属性所有的取值继续创建树的分支;重复算法步骤step 2

2)第2步-分类/测试

利用生成的决策树对输入数据进行分类。对输入的记录,从根结点依次测试记录的属性值,直到到达某个叶结点,从而找到该记录所在的类。

4、算法关键

建立决策树的关键,即在当前状态下选择哪个属性作为分类依据

目标:每个分支节点的样本尽可能属于同一类别,即节点的“纯度”(purity)越来越高;最具区分性的属性!
根据不同目标函数,建立决策树主要有以下三种算法
◼ ID3: 信息增益
◼ C4.5: 信息增益率
◼ CART:基尼指数

二、信息论基础

1、概念

信息论与概率统计中,熵表示随机变量不确定性的大小,是度量样本集合纯度最常用的一种指标

2、信息量

信息量:具有确定概率事件的信息的定量度量
定义: I ( x ) = − l o g 2 p ( x ) I(x)=-log_2p(x) I(x)=log2p(x) 其中p(x)为事件x发生的概率

3、信息熵:

事件集合的信息量的平均值。
定义: H ( x ) = ∑ i h ( x i ) = ∑ i p ( x i ) I ( x i ) = − ∑ i p ( x i ) l o g 2 p ( x i ) H(x) = \sum_{i}h(x_i)=\sum_{i} p(x_i)I(x_i)=-\sum_{i} p(x_i)log_2p(x_i) H(x)=ih(xi)=ip(xi)I(xi)=ip(xi)log2p(xi)

熵定义了一个函数(概率密度函数pdf)到一个值(信息熵)的映射

p ( x ) → H p(x) → H p(x)H (函数→数值)

熵是随机变量不确定性的度量:
◼ 不确定性越大,熵值越大
◼ 若随机变量退化成定值,熵为0
在这里插入图片描述

二、ID3 (Iterative Dichotomiser 3)算法

ID3算法是一种最经典的决策树学习算法。

1、基本思想:

以信息熵为度量,用于决策树节点的属性选择,每次优先选取信息增益最大的属性,亦即能使熵值变为最小的属性,以构造一颗熵值下降最快的决策树,到叶子节点处的熵值为0。此时,每个叶子节点对应的实例集中的实例属于同一类。

熵值下降 → 无序变有序

2、熵引入

1)经验熵

假设当前样本集合D 中第c(c=1,2,…,C)类样本所占比例为 p c p_c pc(c=1,2,…,C),则D 的经验信息熵(简称经验熵)定义为:

H ( D ) = − ∑ c = 1 C p c l o g 2 p c = − ∑ c = 1 C D c D l o g 2 D c D H(D)=-\sum_{c=1}^{C}p_clog_2p_c=-\sum_{c=1}^{C}\frac{D_c}{D}log_2\frac{D_c}{D} H(D)=c=1Cpclog2pc=c=1CDDclog2DDc

H(D)的值越小,则D 的纯度越高

2)条件熵

对随机变量 ( X , Y ) (X, Y) (X,Y),联合分布为: p ( X = x i , Y = y i ) = p i j p(X=x_i,Y=y_i)=p_{ij} p(X=xi,Y=yi)=pij

条件熵 H ( Y ∣ X ) H(Y |X ) H(YX) 表示在已知随机变量X 的条件下,随机变量Y的不确定性:

H ( Y ∣ X ) = − ∑ i = 1 n p i H ( Y ∣ X = x i ) H(Y|X)=-\sum_{i=1}^{n}p_iH(Y|X=x_i) H(YX)=i=1npiH(YX=xi)

可证明:条件熵𝐻(Y|X)相当于联合熵𝐻(𝑋,𝑌)减去单独的熵𝐻(X),即
H ( Y ∣ X ) = H ( X , Y ) − H ( X ) H(Y|X)=H(X,Y)-H(X) H(YX)=H(X,Y)H(X)
在这里插入图片描述
在这里插入图片描述

3)经验条件熵

在这里插入图片描述
即特征a的信息对样本D 的信息的不确定性减少的程度

4)信息增益(information gain)

特征 a 对训练数据集 D 的信息增益 G ( D , a ) G(D, a) G(D,a) ,定义为集合D 的经验熵 H(D) 与特征 a 给定条件下 D 的经验条件熵 H ( D ∣ a ) H(D | a) H(Da) 之差,即
G ( D , a ) = H ( D ) − H ( D ∣ a ) = H ( D ) − ∑ n = 1 N D n D H ( D n ) G(D,a)=H(D)-H(D|a)=H(D)-\sum_{n=1}^{N}\frac{D^n}{D}H(D^n) G(D,a)=H(D)H(Da)=H(D)n=1NDDnH(Dn)

ID3算法即是以此信息增益为准则,对每次递归的节点属性进行选择的

3、算法

在这里插入图片描述

4、算法案例

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5、算法特点

最大优点是,它可以自学习:在学习的过程中,不需要使用者了解过多背景知识,只需要对训练实例进行较好的标注,就能够进行学习。

决策树的分类模型是树状结构,简单直观,比较符合人类的理解方式。

可将决策树中到达每个叶节点的路径转换为IF—THEN形式的分类规则,这种形式更有利于理解。

从一类无序、无规则的事物(概念)中推理出决策树表示的分类规则。

三、ID3算法问题

信息增益偏好取值多的属性(分散,极限趋近于均匀分布)

1、 属性筛选度量标准

可能会受噪声或小样本影响,易出现过拟合问题。
结果训练出来的形状是一棵庞大且深度很浅的树,这样的划分是极为不合理的。
改进方法
在这里插入图片描述
在这里插入图片描述

2、 剪枝处理

1)问题

无法处理连续值的属性。

决策树对训练数据有很好的分类能力,但对未知的测试数据未必有好的分类能力,泛化能力弱,即可能发生过拟合现象。

训练数据有噪声,对训练数据拟合的同时也对噪音进行拟合,影响了分类效果。

叶节点样本太少,易出现耦合的规律性,使一些属性恰巧可以很好地分类,但却与实际的目标函数并无关系。

2)解决

剪枝是决策树学习算法中对付“过拟合”的主要手段

  1. 预剪枝策略(pre-pruning)
    决策树生成过程中,对每个节点在划分前进行估计,若划分不能带来决策树泛化性能提升,则停止划分,并将该节点设为叶节点
    优点:预剪枝“剪掉了”很多没必要展开的分支,降低了过拟合的风险,并且显著减少了决策树的训练时间开销和测试时间开销
    劣势:有些分支的当前划分有可能不能提高甚至降低泛化性能,但后续划分有可能提高泛化性能;预剪枝禁止这些后续分支的展开,可能会导致欠拟合

  2. 后剪枝策略(post-pruning)
    先利用训练集生成决策树,自底向上对非叶节点进行考察,若将该叶节点对应子树替换为叶节点能带来泛化性能提升,则将该子树替换为叶节点
    优点:优势:测试了所有分支,比预剪枝决策树保留了更多分支,降低了欠拟合的风险,泛化性能一般优于预剪枝决策树。
    劣势:后剪枝过程在生成完全决策树后在进行,且要自底向上对所有非叶节点逐一评估;因此,决策树的训练时间开销要高于未剪枝决策树和预剪枝决策树

3)案例

在这里插入图片描述
预剪枝算法
在这里插入图片描述
在这里插入图片描述
后剪枝算法
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3、 连续值处理

无法处理属性值不完整的训练数据
在这里插入图片描述
基本思想:采用二分法(bi-partition)进行离散化
在这里插入图片描述
在这里插入图片描述

4、 缺失值处理

无法处理不同代价的属性
前面假设:所有样本的属性完整
实际情况:存在不完整样本:即样本的某些属性缺失;特别是属性数目较多时
如果简单放弃不完整样本,会导致数据信息的浪费
实际中确实需要属性缺失情况下进行决策
不同代价属性的处理
需要解决的两个问题

  1. 如何在属性值缺失的情况下进行划分属性选择(计算信息增益)?
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  2. 给定划分属性,若样本在该属性上的值缺失,如何对样本进行划分?
    在这里插入图片描述
    案例:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

5、不同代价属性的处理

不同的属性测量具有不同的代价
在属性筛选度量标准中考虑属性的不同代价
优先选择低代价属性的决策树
必要时才依赖高代价属性
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/303528.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python+requests搭建接口自动化测试框架

一、接口自动化的意义(为什么做这个框架) 新版本上线时之前版本的功能需要进行回归测试,导致大量的重复性手工测试。引入自动化测试可以使用自动化技术代替部分手工的回归性测试,解放更多人力做其它更有必要的事情。但目前项目UI变…

抖去推账号矩阵+无人直播+文案引流系统开发搭建--开源

核心技术 1. AI自动直播: 智能系统通过丰富可定制的文案库, 拥有有料有趣的灵魂。不仅能自动语音讲解内容,还可以在直播中和用户灵活互动。直播中可将团购商品同话术自动上下架。 2. AI剪辑 可一键智能批量成片,也可跟着模板剪…

书生·浦语大模型全链路开源体系 学习笔记 第二课

基础作业: 使用 InternLM-Chat-7B 模型生成 300 字的小故事(需截图)。熟悉 hugging face 下载功能,使用 huggingface_hub python 包,下载 InternLM-20B 的 config.json 文件到本地(需截图下载过程&#xf…

基于STM32和MPU6050的自平衡小车设计与实现

基于STM32和MPU6050的自平衡小车设计和实现是一个有趣而具有挑战性的项目。在本文中,我们将介绍如何利用STM32微控制器和MPU6050传感器实现自平衡小车,并提供相应的代码示例。 1. 硬件设计 自平衡小车的核心硬件包括STM32微控制器、MPU6050传感器以及电…

基于springboot+html的汽车销售管理系统设计与实现

基于springboothtml的汽车销售管理系统 🍅 作者主页 央顺技术团队 🍅 欢迎点赞 👍 收藏 ⭐留言 📝 🍅 文末获取源码联系方式 📝 前言 随着汽车市场的快速发展,汽车销售企业面临着越来越大的管理…

计算机基础面试题 |18.精选计算机基础面试题

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

【代码复现系列】paper:CycleGAN and pix2pix in PyTorch

或许有冗余步骤、之后再优化。 1.桌面右键-git bash-输入命令如下【git clone https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix】 2.打开anaconda的prompt,cd到pytorch-CycleGAN-and-pix2pix路径 3.在prompt里输入【conda env create -f environment.y…

基于SSM的校园二手交易管理系统的设计与实现

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:Vue 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目:是 目录…

多项式回归

定义:使用多项式函数来拟合数据点,以预测因变量和自变量之间的关系。 基本形式如下: 理解: 在了解了线性回归模型之后,我们会意识到数据集上的点有时使用曲线拟合效果会更好。我们可以选择使用多项式曲线进行拟合。 …

Gromacs轨迹相关

1. 如何用VMD保存和查看gromacs的模拟轨迹 sob老师,请问一下,vmd载入两个文件后,是在TK中输入animate delete 什么命令可以删除第0帧么? 老师,在载入轨迹的时候出现out of memory,md.xtc文件过大导致vmd闪…

图解JVM (及一些垃圾回收\GC相关面试题 持续更新)

垃圾回收,顾名思义就是释放垃圾占用的空间,从而提升程序性能,防止内存泄露。当一个对象不再被需要时,该对象就需要被回收并释放空间。 Java 内存运行时数据区域包括程序计数器、虚拟机栈、本地方法栈、堆等区域。其中,…

Unity组件开发--相机跟随角色和旋转

1.相机跟随组件,节点: 2.相机跟随组件脚本: using System; using System.Collections; using System.Collections.Generic; using Unity.Burst.Intrinsics; using UnityEngine; using UnityEngine.UI;public class CameraFollow : Singleton&…

软件测试|深入理解SQL CROSS JOIN:交叉连接

简介 在SQL查询中,CROSS JOIN是一种用于从两个或多个表中获取所有可能组合的连接方式。它不依赖于任何关联条件,而是返回两个表中的每一行与另一个表中的每一行的所有组合。CROSS JOIN可以用于生成笛卡尔积,它在某些情况下非常有用&#xff…

服务器监控软件夜莺使用(二)

文章目录 一、采集器安装1. Categraf简介2. Categraf部署3. 测试服务器部署4. 系统监控插件5. 显卡监控插件6. 服务监控插件 二、监控仪表盘1. 机器列表2. 系统监控3. 服务监控 三、告警配置1. 邮件通知2. 告警规则3. 告警自愈 一、采集器安装 1. Categraf简介 Categraf 需要…

一种DevOpts的实现方式:基于gitlab的CICD(二)

写在之前 前文已经搭建了基于gitlab的cicd环境,现在我们来更近一步,结合官网给出的案例来详细介绍如何一步一步实现CI的过程。 基于gitlab搭建一个前端静态页面 环境依赖: gitlabgitlab runner(docker版本) 环境达吉…

【华为】IPsec VPN 实验配置(动态地址接入)

【华为】IPsec VPN 实验配置(动态地址接入) 注意实验需求配置思路配置命令拓扑R1基础配置配置第一阶段 IKE SA配置第二阶段 IPsec SA ISP_R2基础配置 R3基础配置配置第一阶段 IKE SA配置第二阶段 IPsec SA PCPC1PC2 检查建立成功查看命令清除IKE / IPsec…

VBA中类的解读及应用第八讲:实现定时器功能的自定义类事件

《VBA中类的解读及应用》教程【10165646】是我推出的第五套教程,目前已经是第一版修订了。这套教程定位于最高级,是学完初级,中级后的教程。 类,是非常抽象的,更具研究的价值。随着我们学习、应用VBA的深入&#xff0…

Elasticsearch:Search tutorial - 使用 Python 进行搜索 (三)

这个是继上一篇文章 “Elasticsearch:Serarch tutorial - 使用 Python 进行搜索 (二)” 的续篇。在今天的文章中,本节将向你介绍一种不同的搜索方式,利用机器学习 (ML) 技术来解释含义和上下文。 向量搜索 嵌入 (embed…

图像融合论文阅读:CrossFuse: 一种基于交叉注意机制的红外与可见光图像融合方法

article{li2024crossfuse, title{CrossFuse: A novel cross attention mechanism based infrared and visible image fusion approach}, author{Li, Hui and Wu, Xiao-Jun}, journal{Information Fusion}, volume{103}, pages{102147}, year{2024}, publisher{Elsevier} } 论文…

Windows安装Rust环境(完整教程)

一、 安装mingw64(C语言环境) Rust默认使用的C语言依赖Visual Studio,但该工具占用空间大安装也较为麻烦,可以选用轻便的mingw64包。 1.1 安装地址 (1) 下载地址1-GitHub:Releases niXman/mingw-builds-binaries GitHub (2) 下载地址2-W…