图像融合论文阅读:CrossFuse: 一种基于交叉注意机制的红外与可见光图像融合方法

@article{li2024crossfuse,
title={CrossFuse: A novel cross attention mechanism based infrared and visible image fusion approach},
author={Li, Hui and Wu, Xiao-Jun},
journal={Information Fusion},
volume={103},
pages={102147},
year={2024},
publisher={Elsevier}
}


论文级别:SCI A1
影响因子:18.6

📖[论文下载地址]
💽[代码下载地址]


文章目录

  • 📖论文解读
    • 🔑关键词
    • 💭核心思想
    • 🪅相关背景知识
    • 🪢网络结构
      • 🪢编码器
      • 🪢CAM
        • 🪢SA
        • 🪢CA
      • 🪢解码器
    • 🎢训练设置
      • 🎢一阶段
      • 🎢二阶段
    • 📉损失函数
    • 🔢数据集
    • 🔬实验
      • 📏评价指标
      • 🥅Baseline
      • 🔬实验结果
  • 🚀传送门
    • 📑图像融合相关论文阅读笔记
    • 📚图像融合论文baseline总结
    • 📑其他论文
    • 🎈其他总结
    • ✨精品文章总结
  • 🌻【如侵权请私信我删除】


📖论文解读

以往的交叉注意力只考虑相关性,而图像融合任务需要关注互补信息。
为了解决这个问题,作者提出了CrossFuse,使用【交叉注意力机制CAM】增强互补信息,使用了两阶段训练策略。
第一阶段为两种模态训练结构相同的自编码器
第二阶段固定编码器参数,训练CAM和解码器

🔑关键词

Image fusion 图像融合
Transformer
Cross attention 交叉注意力
Infrared image 红外图像
Visible image 可见光图像

💭核心思想

通过【交叉注意力机制CAM】增强互补信息,降低冗余特征的负面影响。

扩展学习
[什么是图像融合?(一看就通,通俗易懂)]

从下图中我们可以看到,相同场景的不同模态图像,有高相关性区域和高度不相关性区域。
在这里插入图片描述

🪅相关背景知识

🪢网络结构

作者提出的网络结构如下所示。
I i r I_{ir} Iir I v i I_{vi} Ivi分别代表红外图像和可见光图像,两个编码器提取多模态信息。
基于Transformer的CAM结构用来融合多模态特征
解码器用来产生融合图像 F F F
在编码器和解码器之间有两个skip connection,用来保留源图的更多深/浅层特征
在这里插入图片描述
为什么使用两个编码器呢?因为作者认为两个模态间信息差距较大,这两个编码器结构是相同的,但是网络内部参数却有所区别。
下面我们一起来看看编码器的详细结构

🪢编码器

在这里插入图片描述
第一个卷积层用来提取浅层特征(保留了丰富的纹理信息),然后经过最大池化,DenseBlock保留多尺度特征中更多有用信息,随着编码器层数越来越深,深层特征开始集中在显著目标上。
为了增强细节信息和显著特征,在编码器和解码器之间加入了两个跳接。就是上图两个蓝紫色箭头,一个在Conv上,还有一个在最后一个最大池化层上。

🪢CAM

Cross-attention mechanism,交叉注意力机制。其结构如下图所示。
在这里插入图片描述
两个分支的参数是不相同的,每个模态的特征首先经过自注意力机制SA以增强内部特征,然后经过shift操作(在水平和垂直方向移动特征位置),然后再经过SA,然后unshift恢复位置,经过交叉注意力机制CA得到融合特征。

🪢SA

在这里插入图片描述
x c x^c xc是SA的输入,也就下图(图4)左边的长条立方体,编码器的输出。
Q c K c V c Q_cK_cV_c QcKcVc是输入的不同表示,涉及Transformer里的知识,不了解的同学可以参考下面的链接。
U q k v U_{qkv} Uqkv是可以通过全连接层学习参数的变换矩阵
d d d是输入向量的维度
n o r m norm norm表示线性范数运算
M L P ( ⋅ ) MLP(·) MLP()是多层感知机

扩展学习
史上最小白之Transformer详解

🪢CA

在这里插入图片描述
在2式总, c c c c ^ \hat c c^代表不同模态。
这个地方的交叉计算,和SwinFusion有点像,感兴趣的读者可以移步去看我的另外一篇阅读笔记。

扩展学习
SwinFusion阅读笔记

SA和CA最大的区别在于矩阵乘法后的激活函数,即CA用到了反向softmax。
在这里插入图片描述

作者给出这个地方的解释是,对于不同的模态,应该增强互补(不相关)信息而不是冗余(相关)特征。

在经过CAM之后,得到了一个融合特征,接下来我们需要将这个融合特征解码为融合图像。

🪢解码器

解码器的结构如下图所示。

在这里插入图片描述
除了在编码器中刚提到两个skip connection以外,作者还加入了【特征强度感知策略】(the feature intensity aware strategy)用来进行【多级特征融合】,其公式如下:
在这里插入图片描述

( ⋅ ) (·) ()表示深层特征中的位置
Φ c m \Phi^m_c Φcm代表了CAM提取的特征, Φ i r m \Phi^m_{ir} Φirm Φ v i m \Phi^m_{vi} Φvim分别代表了红外图像和可见光图像的特征。
∇ m ∇^m m分别表示浅层特征和深层特征的细节和基础信息提取器。其计算公式为:
在这里插入图片描述

🎢训练设置

本文采用了两阶段训练。
一阶段:编码器训练。为每种模态构建自编码器网络用于重建输入。
二阶段:针对不同的编码器, 训练CAM和解码器。

🎢一阶段

在这里插入图片描述
一阶段训练的损失函数用到了像素损失和结构损失:
在这里插入图片描述
系数为1e4

🎢二阶段

在这里插入图片描述
二阶段训练的时候,固化一阶段训练好的编码器。训练CAM和解码器。
该阶段作者提出了一种注意损失函数,CAM损失=强度损失+10*梯度损失
在这里插入图片描述
在这里插入图片描述
M c M_{c} Mc代表单个模态的强度掩码
在这里插入图片描述
l o c c loc_c locc代表单个模态源图像中局部patch的平均值,可以用下式计算:
在这里插入图片描述
a v g c avg_c avgc代表通过11×11核大小的均值滤波器 ∇ a ∇_a a计算得到的单个模态的值。

在这里插入图片描述
∇ g ∇_g g代表了3×3的均值滤波器

训练设置如下所示。

在这里插入图片描述

📉损失函数

上节已介绍。

🔢数据集

  • 训练:KAIST
  • 测试:TNO, VOT-RGBT

图像融合数据集链接
[图像融合常用数据集整理]

🔬实验

📏评价指标

  • EN
  • SD
  • MI
  • FMI_dct
  • FMI_pixel
  • SCD

扩展学习
[图像融合定量指标分析]

🥅Baseline

  • FusionGAN, IFCNN, U2Fusion, YDTR, DATFuse, IRFS, SemLA, DDFM

✨✨✨扩展学习
✨✨✨强烈推荐必看博客[图像融合论文baseline及其网络模型]✨✨✨

🔬实验结果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

更多实验结果及分析可以查看原文:
📖[论文下载地址]


🚀传送门

📑图像融合相关论文阅读笔记

📑[(DIF-Net)Unsupervised Deep Image Fusion With Structure Tensor Representations]
📑[(MURF: Mutually Reinforcing Multi-Modal Image Registration and Fusion]
📑[(A Deep Learning Framework for Infrared and Visible Image Fusion Without Strict Registration]
📑[(APWNet)Real-time infrared and visible image fusion network using adaptive pixel weighting strategy]
📑[Dif-fusion: Towards high color fidelity in infrared and visible image fusion with diffusion models]
📑[Coconet: Coupled contrastive learning network with multi-level feature ensemble for multi-modality image fusion]
📑[LRRNet: A Novel Representation Learning Guided Fusion Network for Infrared and Visible Images]
📑[(DeFusion)Fusion from decomposition: A self-supervised decomposition approach for image fusion]
📑[ReCoNet: Recurrent Correction Network for Fast and Efficient Multi-modality Image Fusion]
📑[RFN-Nest: An end-to-end resid- ual fusion network for infrared and visible images]
📑[SwinFuse: A Residual Swin Transformer Fusion Network for Infrared and Visible Images]
📑[SwinFusion: Cross-domain Long-range Learning for General Image Fusion via Swin Transformer]
📑[(MFEIF)Learning a Deep Multi-Scale Feature Ensemble and an Edge-Attention Guidance for Image Fusion]
📑[DenseFuse: A fusion approach to infrared and visible images]
📑[DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pair]
📑[GANMcC: A Generative Adversarial Network With Multiclassification Constraints for IVIF]
📑[DIDFuse: Deep Image Decomposition for Infrared and Visible Image Fusion]
📑[IFCNN: A general image fusion framework based on convolutional neural network]
📑[(PMGI) Rethinking the image fusion: A fast unified image fusion network based on proportional maintenance of gradient and intensity]
📑[SDNet: A Versatile Squeeze-and-Decomposition Network for Real-Time Image Fusion]
📑[DDcGAN: A Dual-Discriminator Conditional Generative Adversarial Network for Multi-Resolution Image Fusion]
📑[FusionGAN: A generative adversarial network for infrared and visible image fusion]
📑[PIAFusion: A progressive infrared and visible image fusion network based on illumination aw]
📑[CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for Multi-Modality Image Fusion]
📑[U2Fusion: A Unified Unsupervised Image Fusion Network]
📑综述[Visible and Infrared Image Fusion Using Deep Learning]

📚图像融合论文baseline总结

📚[图像融合论文baseline及其网络模型]

📑其他论文

📑[3D目标检测综述:Multi-Modal 3D Object Detection in Autonomous Driving:A Survey]

🎈其他总结

🎈[CVPR2023、ICCV2023论文题目汇总及词频统计]

✨精品文章总结

✨[图像融合论文及代码整理最全大合集]
✨[图像融合常用数据集整理]

🌻【如侵权请私信我删除】

如有疑问可联系:420269520@qq.com;
码字不易,【关注,收藏,点赞】一键三连是我持续更新的动力,祝各位早发paper,顺利毕业~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/303497.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Windows安装Rust环境(完整教程)

一、 安装mingw64(C语言环境) Rust默认使用的C语言依赖Visual Studio,但该工具占用空间大安装也较为麻烦,可以选用轻便的mingw64包。 1.1 安装地址 (1) 下载地址1-GitHub:Releases niXman/mingw-builds-binaries GitHub (2) 下载地址2-W…

函数战争(栈帧)之创建与销毁(c语言)(vs2022)

首先,什么是函数栈帧? C语言中,每个栈帧对应着一个未运行完的函数。栈帧中保存了该函数的返回地址和局部变量。栈帧也叫过程活动记录,是编译器用来实现过程函数调用的一种数据结构。 以问答的方式解释编译器与解释器-CSDN博客htt…

C++ OpenGL 3D Game Tutorial 2: Making OpenGL 3D Engine学习笔记

视频地址https://www.youtube.com/watch?vPH5kH8h82L8&listPLv8DnRaQOs5-MR-zbP1QUdq5FL0FWqVzg&index3 一、main类 接上一篇内容&#xff0c;main.cpp的内容增加了一些代码&#xff0c;显得严谨一些&#xff1a; #include<OGL3D/Game/OGame.h> #include<i…

寒假前端第一次作业

1、用户注册&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>用户注册</title> …

C++学习笔记——string类和new函数

目录 string类 1.功能增强 1.1 子字符串提取 1.2 字符串拼接 1.3 大小写转换 1.4 字符串比较 2.性能优化 3.使用示例 下面是一个简单的使用示例&#xff0c;展示了如何使用改进后的String类&#xff1a; NEW函数 2.1NEW函数的基本用法 2.2NEW函数的注意事项 2.3避…

使用lwip的perf进行测速TCP不稳定的一些相关配置项

在使用lwIP的perf工具进行TCP性能测试时&#xff0c;TCP不稳定可能涉及以下配置问题&#xff1a; 缓冲区大小&#xff08;Buffer Size&#xff09;&#xff1a;lwIP中的TCP性能受到发送和接收缓冲区大小的影响。如果缓冲区过小&#xff0c;可能导致数据包丢失或延迟增加&#x…

《BackTrader量化交易图解》第8章:plot 绘制金融图

文章目录 8. plot 绘制金融图8.1 金融分析曲线8.2 多曲线金融指标8.3 Observers 观测子模块8.4 plot 绘图函数的常用参数8.5 买卖点符号和色彩风格8.6 vol 成交参数8.7 多图拼接模式8.8 绘制 HA 平均 K 线图 8. plot 绘制金融图 8.1 金融分析曲线 BackTrader内置的plot绘图函…

Hibernate实战之操作MySQL数据库(2024-1-8)

Hibernate实战之操作MySQL数据库 2024.1.8 前提环境&#xff08;JavaMySQLNavicatVS Code&#xff09;1、Hibernate简介1.1 了解HQL 2、MySQL数据库建表2.1 编写SQL脚本2.2 MySQL执行脚本 3、Java操作MySQL实例&#xff08;Hibernate&#xff09;3.1 准备依赖的第三方jar包3.2 …

密码学:一文读懂非对称加密算法 DH、RSA

文章目录 前言非对称加密算法的由来非对称加密算法的家谱1.基于因子分解难题2.基于离散对数难题 密钥交换算法-DH密钥交换算法-DH的通信模型初始化DH算法密钥对甲方构建DH算法本地密钥乙方构建DH算法本地密钥DH算法加密消息传递 典型非对称加密算法-RSARSA的通信模型RSA特有的的…

大数据StarRocks(六) :Catalog

StarRocks 自 2.3 版本起支持 Catalog&#xff08;数据目录&#xff09;功能&#xff0c;实现在一套系统内同时维护内、外部数据&#xff0c;方便您轻松访问并查询存储在各类外部源的数据。 1. 基本概念 内部数据&#xff1a;指保存在 StarRocks 中的数据。 外部数据&#xf…

用css给宽高不固定的矩形画对角线

.kong{width: 200rpx;height: 76rpx;background: linear-gradient(to bottom right, #E5E5E5 0%, rgba(0, 0, 0, 0.1) calc(50% - 1px),#175CFF 50%, rgba(0, 0, 0, 0.1) calc(50% 1px),rgba(0, 0, 0, 0.1) 100%);}参考&#xff1a; https://blog.csdn.net/weixin_38779534/a…

1.1map

unordered_map和map的使用几乎是一致的&#xff0c;只是头文件和定义不同 #include<iostream> #include<map>//使用map需要的头文件 #include<unordered_map>//使用unordered_map需要的头文件 #include<set>//使用set需要的头文件 #include<uno…

web前端(html)练习

第一题 1. 用户名为文本框&#xff0c;名称为 UserName&#xff0c;长度为 15&#xff0c;最大字符数为 20。 2. 密码为密码框&#xff0c;名称为 UserPass&#xff0c;长度为 15&#xff0c;最大字符数为 20。 3. 性别为两个单选按钮&#xff0c;名称为 sex&#xff0c;值分…

【linux】tcpdump 使用

tcpdump 是一个强大的网络分析工具&#xff0c;可以在 UNIX 和类 UNIX 系统上使用&#xff0c;用于捕获和分析网络流量。它允许用户截取和显示发送或接收过网络的 TCP/IP 和其他数据包。 一、安装 tcpdump 通常是默认安装在大多数 Linux 发行版中的。如果未安装&#xff0c;可…

使用lwip的perf进行测速TCP会有较多的duplicate ack的原因分析

在使用lwIP的perf工具进行TCP测速时&#xff0c;出现较多的重复确认&#xff08;duplicate ACK&#xff09;可能是由于以下原因导致的&#xff1a; 丢包或乱序&#xff1a;重复确认通常是由于网络中的数据包丢失或乱序到达引起的。当接收方收到一个乱序的数据包时&#xff0c;它…

imazing破解版百度云2.17.3(附激活许可证下载)

iMazing是一款强大的 iOS 设备管理软件&#xff0c;不管是 iPhone、iPad 或 iPod Touch 设备&#xff0c;只要将 iOS 设备连接到计算机&#xff0c;就可以处理不同类型的数据。 iPhone 和 iPad 备份 借助 iMazing 的独有 iOS 备份技术&#xff08;无线、隐私和自动&#xff09…

系列十三、查询数据库中某个库、表、索引等所占空间的大小

一、information_schema数据库 1.1、概述 information_schema数据库是MySQL出厂默认带的一个数据库&#xff0c;不管我们是在Linux中安装MySQL还是在Windows中安装MySQL&#xff0c;安装好后都会有一个数据库information_schema&#xff0c;这个库中存放了其他库的所有信息。 …

【UE Niagara学习笔记】02 - 制作燃烧的火焰

目录 效果 步骤 一、添加资产 二、制作材质 三、制作粒子 3.1 循环播放 3.2 粒子生成的数量 3.3 粒子的生命周期和初始大小 3.4 火焰高度 3.5 火焰范围 3.6 火焰颜色 效果 步骤 一、添加资产 1. 在虚幻商城中搜索“M5 VFX Vol2. Fire and Flames(Niagara)”…

网络协议与攻击模拟_01winshark工具简介

一、TCP/IP协议簇 网络接口层&#xff08;没有特定的协议&#xff09; 物理层&#xff1a;PPPOE宽带拨号&#xff08;应用场景&#xff1a;宽带拨号&#xff0c;运营商切网过来没有固定IP就需要拨号&#xff0c;家庭带宽一般都采用的是拨号方式&#xff09;数据链路层网络层…

kettle的基本介绍和使用

1、 kettle概述 1.1 什么是kettle Kettle是一款开源的ETL工具&#xff0c;纯java编写&#xff0c;可以在Window、Linux、Unix上运行&#xff0c;绿色无需安装&#xff0c;数据抽取高效稳定。 1.2 Kettle核心知识点 1.2.1 Kettle工程存储方式 以XML形式存储以资源库方式存储…