DDIM学习笔记

写在前面:
(1)建议看这篇论文之前,可先看我写的前一篇论文:
DDPM推导笔记-大白话推导

主要学习和参考了以下文章:
(1)一文带你看懂DDPM和DDIM
(2)关于 DDIM 采样算法的推导

0. DDIM的创新点

​ DDPM有一个很大的缺点就是其本身是一个马尔科夫链的过程,推理速度太慢,如果前向加噪过程是1000步,那么去噪过程就需要使用Unet生成噪声,然后去噪,这样进行1000步。这是一个及其缓慢的过程,DDIM原论文中举了一个生动的例子:

For example, it takes around 20 hours to sample 50k images of size 32 x 32 from a DDPM, but less than a minute to do so from a GAN on a Nvidia 2080 Ti GPU.

​ 基于DDPM,DDIM主要有两项改进:

​ (1)对于一个已经训练好的DDPM,只需要对采样公式做简单的修改,模型就能在去噪时「跳步骤」,在一步去噪迭代中直接预测若干次去噪后的结果。比如说,假设模型从时刻T=100开始去噪,新的模型可以在每步去噪迭代中预测10次去噪操作后的结果,也就是逐步预测时刻t=90,80,…,0的结果。这样,DDPM的采样速度就被加速了10倍。

​ (2)DDIM论文推广了DDPM的数学模型,打破了马尔科夫链的过程,从更高的视角定义了DDPM的反向过程(去噪过程)。在这个新数学模型下,我们可以自定义模型的噪声强度,让同一个训练好的DDPM有不同的采样效果。

1. 公式推导

​ DDPM的推导过程可以看《DDPM推导笔记》,这里假设 P ( x t − 1 ∣ x t , x 0 ) P(x_{t-1}|x_t, x_0) P(xt1xt,x0)满足如下正态分布,即:
P ( x t − 1 ∣ x t , x 0 ) ∼ N ( k x 0 + m x t , σ 2 ) 即 : x t − 1 = k x o + m x t + σ ϵ 其中有: ϵ ∼ N ( 0 , 1 ) (1) P(x_{t-1}|x_t, x_0) \sim N(kx_0+mx_t, \sigma^2) \\ 即:x_{t-1} = kx_o+mx_t + \sigma \epsilon \tag{1} \\ 其中有: \epsilon \sim N(0, 1) P(xt1xt,x0)N(kx0+mxt,σ2):xt1=kxo+mxt+σϵ其中有:ϵN(0,1)(1)
又因为前向的加噪过程满足:
x t = a t ˉ x 0 + 1 − a t ˉ ϵ 其中 ϵ ∼ N ( 0 , 1 ) (2) x_t = \sqrt{\bar{a_t}} x_0 + \sqrt{1 - \bar{a_t}} \epsilon \\ 其中\epsilon \sim N(0,1) \tag{2} xt=atˉ x0+1atˉ ϵ其中ϵN(0,1)(2)
合并(1)(2)上面两式,有:
x t − 1 = k x 0 + m [ a ˉ t x 0 + 1 − a ˉ t ϵ ] + σ ϵ (3) x_{t-1} = kx_0 + m[\sqrt{\bar{a}_t}x_0 + \sqrt{1-\bar{a}_t} \epsilon] + \sigma \epsilon \tag{3} xt1=kx0+m[aˉt x0+1aˉt ϵ]+σϵ(3)
再次合并有:
x t − 1 = ( k + m a ˉ t ) x 0 + ϵ ′ 其中: ϵ ’ ∼ M ( 0 , m 2 ( 1 − a ˉ t ) + σ 2 ) (4) x_{t-1} = (k+m\sqrt{\bar{a}_t}) x_0 + \epsilon' \\ 其中: \epsilon’ \sim M(0, m^2(1-\bar{a}_t) + \sigma^2) \tag{4} xt1=(k+maˉt )x0+ϵ其中:ϵM(0,m2(1aˉt)+σ2)(4)
从DDPM中可以可知:
x t − 1 = a ˉ t − 1 x 0 + 1 − a ˉ t − 1 ϵ (5) x_{t-1} = \sqrt{\bar{a}_{t-1}} x_0 + \sqrt{1-\bar{a}_{t-1}} \epsilon \tag{5} xt1=aˉt1 x0+1aˉt1 ϵ(5)
通过式(4)(5)的 x t − 1 x_{t-1} xt1服从的概率分布可知:
k + m a ˉ t = a ˉ t − 1 m 2 ( 1 − a ˉ t ) + σ 2 = 1 − a ˉ t − 1 (6) k + m\sqrt{\bar{a}_t} = \sqrt{\bar{a}_{t-1}} \\ m^2(1-\bar{a}_t) + \sigma^2 = 1-\bar{a}_{t-1} \tag{6} k+maˉt =aˉt1 m2(1aˉt)+σ2=1aˉt1(6)
由式(6)两个式子可解出:

将m,k带入到 P ( x t − 1 ∣ x t , x 0 ) P(x_{t-1}|x_t, x_0) P(xt1xt,x0)中,可得:

在这里插入图片描述

依旧可以使用 x t , x 0 x_t, x_0 xt,x0的关系式把 x 0 x_0 x0去掉:
x t = a t ˉ x 0 + 1 − a t ˉ ϵ 这里为了防止 ϵ 和后面的 ϵ 搞混,这里记为 ϵ t , 则上式变为: x t = a t ˉ x 0 + 1 − a t ˉ ϵ t (8) x_t = \sqrt{\bar{a_t}} x_0 + \sqrt{1 - \bar{a_t}} \epsilon \\ 这里为了防止\epsilon和后面的\epsilon搞混,这里记为\epsilon_{t},则上式变为:\\ x_t = \sqrt{\bar{a_t}} x_0 + \sqrt{1 - \bar{a_t}} \epsilon_t \tag{8} xt=atˉ x0+1atˉ ϵ这里为了防止ϵ和后面的ϵ搞混,这里记为ϵt,则上式变为:xt=atˉ x0+1atˉ ϵt(8)
P ( x t − 1 ∣ x t , x 0 ) P(x_{t-1}|x_t, x_0) P(xt1xt,x0)的概率分布采样可得到:
在这里插入图片描述

其中, ϵ \epsilon ϵ是从标准正太分布中,随机采样得到; ϵ t \epsilon_t ϵt是和DDPM一样,使用神经网络训练而来的; x t x_t xt是输入; a ˉ t − 1 和 a ˉ t \bar{a}_{t-1}和\bar{a}_t aˉt1aˉt是事先定义好的。至此,我们就只需要讨论 σ \sigma σ这个参数了。

2. σ \sigma σ的讨论

​ 怎样选取 σ \sigma σ才能获得最佳的加速效果呢?

​ 作者做了一些实验,作者原文中使用 σ τ i ( η ) \sigma_{\tau_i}{(\eta)} στi(η)来表示的 σ \sigma σ,其式子如下:
在这里插入图片描述

使用 η \eta η控制其大小。事实上,当 η = 1 \eta = 1 η=1时就变成了DDPM的去噪过程了,
在这里插入图片描述

η = 0 \eta=0 η=0时,效果是最好的。所以DDIM令 σ = 0 \sigma=0 σ=0

3. x p r e v x_{prev} xprev的推导

​ 从式9且 σ = 0 \sigma=0 σ=0,则式9中的所有都已知了!!!

​ 但是,即使这样,我们也还是由 x t 推导出 x t − 1 x_t推导出x_{t-1} xt推导出xt1呀,这样还是不能加快推理!

​ 不忙,我们回过头去思考,发现上面的推导过程中全程没有使用:
x t = a t x t − 1 + 1 − a t ϵ x_t= \sqrt{a_t}x_{t-1} + \sqrt{1-a_t} \epsilon xt=at xt1+1at ϵ
​ 也就可以不需要严格的由 x t 算到 x t − 1 x_t算到x_{t-1} xt算到xt1,则可以令 x p r e v 替代 x t − 1 x_{prev}替代x_{t-1} xprev替代xt1,式(9)则可以变换为:

在这里插入图片描述

​ 至此,所有的参数要是实现定义好了,要么是需要训练的,这样 x t 和 x p r e v x_t和x_{prev} xtxprev则可以相隔多个迭代步数。

4.疑难解答

Q1: 为什么式(11)可以简单的将 x p r e v 替代 x t − 1 x_{prev}替代x_{t-1} xprev替代xt1,毕竟虽然反向过程没有使用到 x t − 1 算到 x t x_{t-1}算到x_{t} xt1算到xt的关系式,但前向过程是使用到的呀?

​ 目前我也没有答案!还在理解中,由大佬路过,请留言讨论!

​ Q2: 为什么在DDIM可以令方差 σ = 0 \sigma=0 σ=0 ?

​ 目前我也没有答案!还在理解中,由大佬路过,请留言讨论!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/303068.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何优雅的搭建一个轻量化的网站

本地网页 这里我找到了一个带有简单的悬停变色效果的个人博客网站模板。用来演示这次的轻量化网站搭建。你可以复制这段代码到一个txt文件中,修改文件后缀名为html即可得到一个最简单的静态网页文件。在没有搭建网站服务器时,本机可以通过直接双击该文件…

设计模式的艺术P1基础—2.3 类之间的关系

设计模式的艺术P1基础—2.3 类之间的关系 在软件系统中,类并不是孤立存在的,类与类之间存在各种关系。对于不同类型的关系,UML提供了不同的表示方式 1.关联关系 关联(Association)关系是类与类之间最常用…

AR眼镜定制_ar智能眼镜5G硬件解决方案

AR眼镜近年来备受瞩目,其易于佩戴、轻巧耐用、功能强大、用途广泛的特点受到了广泛关注。 AR眼镜的应用场景非常广泛,不仅包括消费级市场,还涵盖了旅游、教育、工业、医疗等多个领域。新的工业AR穿戴技术以及工业级语音交互操作系统&#xff…

BigDecimal的性能问题

BigDecimal 是 Java 中用于精确计算的数字类,它可以处理任意精度的小数运算。由于其精确性和灵活性,BigDecimal 在某些场景下可能会带来性能问题。 BigDecimal的性能问题 BigDecimal的性能问题主要源于以下几点: 内存占用:BigDec…

Opencv实验合集——实验八:相机校准

1.定义 首先,我们来理解一下怎么从相机的角度去看一张图片,就好比如你用眼睛作为相机来进行摄影,但是比摄影机强的是,你是怎么摄影图片之后再将它矫正出现在你眼前,将歪歪扭扭的图片变成一张在你眼前是一张直的图片 为…

scala 安装和创建项目

Scala,一种可随您扩展的编程语言:从小型脚本到大型多平台应用程序。Scala不是Java的扩展,但它完全可以与Java互操作。在编译时,Scala文件将转换为Java字节码并在JVM(Java虚拟机)上运行。Scala被设计成面向对…

excel中相同类型的数据归到一起显示

1.选中所有数据 2.开始菜单-排序和筛选-自定义排序 3.选择分类关键字 此处,以属性为例 4.效果 归类后的数据:

已解决 | Go Error: redeclared as imported package name 问题

博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通Golang》…

【MIT 6.S081】2020, 实验记录(2),Lab: System calls

目录 TaskTask 1: System call tracing1.1 task 说明1.2 实现过程1.3 测试 这个实验尝试自己在 OS kernel 中添加 system call。 Task Task 1: System call tracing 1.1 task 说明 这个 task 实现在 kernel 中添加一个 trace 的系统调用,当用户调用这个系统调用…

大模型学习

大模型的参数量和显存占用估算 现在业界的大语言模型都是基于transformer模型的,模型结构主要有两大类:encoder-decoder(代表模型是T5)和decoder-only,具体的,decoder-only结构又可以分为Causal LM&#x…

【Linux Shell】10. 函数

文章目录 【 1. 函数的定义 】【 2. 函数参数 】 【 1. 函数的定义 】 所有函数在使用前必须定义 。这意味着必须将函数放在脚本开始部分,直至shell解释器首次发现它时,才可以使用。 调用函数仅使用其函数名即可 。 函数返回值在调用该函数后通过 $? 来…

一文搞定JMM核心原理

公众号《鲁大猿》,寻精品资料,帮你构建Java全栈知识体系 www.jiagoujishu.cn (架构技术.cn) JMM引入 从堆栈说起 JVM内部使用的Java内存模型在线程栈和堆之间划分内存。 此图从逻辑角度说明了Java内存模型: # 堆栈里…

消除代码冗长神器 - Lombok | @EqualsAndHashCode/@ToString注解详解

🤷 场景 Java 中所有对象的父类都是 Object 类,而 Object 类中会有默认的 equals/hashCode/toString 方法,但是有时候,这些方法需要子类去 Override。 😎 IDE 解决方案 很多 IDE 中内置了生成 equals、hashCode、toString 的功能,下面以 IDEA 为例。在类中,按 Alt …

[Kubernetes]5. k8s集群StatefulSet详解,以及数据持久化(SC PV PVC)

前面通过deployment结合service来部署无状态的应用,下面来讲解通过satefulSet结合service来部署有状态的应用 一.StatefulSet详解 1.有状态和无状态区别 无状态: 无状态(stateless)、牲畜(cattle)、无名(nameless)、可丢弃(disposable) 有状态: 有状态(stateful)、宠物(pet)…

系列九、Feign

一、Feign 1.1、Java中如何实现跨接口调用 (1) Httpclient Httpclient是Apache Jakarta Comon下的子项目,用来提供高效的、最新的、功能丰富的支持HTTP协议的客户端编程工具包,并且它支持HTTP协议的最新版本和建议。HttpC…

医院手麻系统商业项目源码,采用mysql+laravel+vue2框架开发,支持二开

手术麻醉系统源码,手麻系统源码 手术麻醉信息管理系统是数字化手段应用于手术过程中的重要组成部分,用数字形式获取并存储手术相关信息,既便捷又高效。既然是管理系统,那就是一整套流程,管理患者手术、麻醉的申请、审批…

linux安装codeserver实现云端开发

先看图 下载安装包 https://github.com/coder/code-server/releases 找到code-server-版本号-linux-amd64.tar.gz,我这里是code-server-4.16.1-linux-amd64.tar.gz 1、使用acrm用户登录目标服务器 2、切换root用户,创建 vscode 用户,并设…

学起来!一键转发朋友圈,告别手动复制粘贴

关于朋友圈运营,你还在不同账号来回切换、一个个复制粘贴文案和保存图片吗? 今天分享一个能一键转发朋友圈的神器,帮助你提高效率。 快速转发 在此页面展示所登录微信号的朋友圈,只需单击“转发”,就会自动复制这条朋友圈内容&a…

【花艺电商】SpringBoot集成MyBatis-Plus、Swagger2、SpringSecurity、OAuth2等技术整合开发

目录 一、功能介绍 1. 说明 2. 功能实现 3. 技术应用 二、技术详述 1.MyBatis-Plus 主要体现 项目应用 2.SpringSecurity 应用作用 三、页面展示 1. 登入 2. 主页 3. 详情 4. 购物车 5. 订单 6. 沙箱支付 每篇一获 一、功能介绍 1. 说明 这个项目主要使用了…

C++-模板与容器

1、模板 模板可以让类或者函数支持一种通用类型,这种通用类型在实际运行过程中可以使用任何数据类型。因此程序员可以写出一些与类型无关的代码。这种编程方式也叫“泛型编程”。 通常有两种形式: 函数模板类模板 1.1 函数模板 //模板类型声明 template&…