复试 || 就业day05(2024.01.08)项目一

文章目录

  • 前言
  • 代码模拟梯度下降
    • 构建函数与导函数
    • 函数的可视化
    • 求这个方程的最小值(直接求导)
    • 求方程最小值(不令方程导为0)【梯度下降】
      • eta=0.1
      • eta = 0.2
      • eta = 50
      • eta = 0.01
      • 画出eta=0.1时的梯度下降x的变化过程
  • 总结

前言

💫你好,我是辰chen,本文旨在准备考研复试或就业
💫本文内容来自某机构网课,是我为复试准备的第一个项目
💫欢迎大家的关注,我的博客主要关注于考研408以及AIoT的内容
🌟 预置知识详见我的AIoT板块,需掌握 基本Python语法, Numpy, Pandas, Matplotlib

以下的几个专栏是本人比较满意的专栏(大部分专栏仍在持续更新),欢迎大家的关注:

💥ACM-ICPC算法汇总【基础篇】
💥ACM-ICPC算法汇总【提高篇】
💥AIoT(人工智能+物联网)
💥考研
💥CSP认证考试历年题解

代码模拟梯度下降

import numpy as np
import matplotlib.pyplot as plt

构建函数与导函数

f = lambda x : (x - 3.5) ** 2 - 4.5 * x + 10
# 导函数
g = lambda x : 2 * (x - 3.5) - 4.5

函数的可视化

x = np.linspace(0, 11.5, 100)
y = f(x)

plt.plot(x, y)
# 画出最小值点(5.75即为最小值点,具体计算即为令导数为0,见下个代码块)
plt.scatter(5.75, f(5.75), color = 'red', s = 30)

在这里插入图片描述

求这个方程的最小值(直接求导)

'''
令导数值 = 0
2 * (x - 3.5) - 4.5 = 0
2 * x = 11.5
x = 5.75
'''

求方程最小值(不令方程导为0)【梯度下降】

eta=0.1

# 给一个步幅,也就是学习率
eta = 0.1 

# 正解为 x = 5.75, 若我们梯度下降求得的 x = 5.749, 5.7501 ... 亦是正确答案(很接近)
x = np.random.randint(0, 12, size = 1)[0]

# 多次 while 循环,每次梯度下降,记录一下上一次的值,规定一个精确度进行比较
# +0.1; +0.2; +1;...都是可以的,是为了让他们在一开始有差异
last_x = x + 0.1

# 下面自定义一个精确度
precision = 0.0001
print('-----------------随机的x是:', x)

while True:
    if np.abs(x - last_x) < precision:    # 退出死循环条件:更新时变化甚微
        break
    # 更新,梯度下降
    last_x = x
    x = x - eta * g(x)
    print('+++++++++++++++++更新之后的x是:', x)

在这里插入图片描述
可以看到,最终逼近的结果为 5.750373845373813,可以认为是正确解

eta = 0.2

eta 调大之后,可以明显观察到收敛的快了

# 给一个步幅,也就是学习率
eta = 0.2

# 正解为 x = 5.75, 若我们梯度下降求得的 x = 5.749, 5.7501 ... 亦是正确答案(很接近)
x = np.random.randint(0, 12, size = 1)[0]

# 多次 while 循环,每次梯度下降,记录一下上一次的值,规定一个精确度进行比较
# +0.1; +0.2; +1;...都是可以的,是为了让他们在一开始有差异
last_x = x + 0.1

# 下面自定义一个精确度
precision = 0.0001
print('-----------------随机的x是:', x)

while True:
    if np.abs(x - last_x) < precision:    # 退出死循环条件:更新时变化甚微
        break
    # 更新,梯度下降
    last_x = x
    x = x - eta * g(x)
    print('+++++++++++++++++更新之后的x是:', x)

在这里插入图片描述

eta = 50

当然,eta 的值也不可以设的过大,会造成发散

# 给一个步幅,也就是学习率
eta = 50

# 正解为 x = 5.75, 若我们梯度下降求得的 x = 5.749, 5.7501 ... 亦是正确答案(很接近)
x = np.random.randint(0, 12, size = 1)[0]

# 多次 while 循环,每次梯度下降,记录一下上一次的值,规定一个精确度进行比较
# +0.1; +0.2; +1;...都是可以的,是为了让他们在一开始有差异
last_x = x + 0.1

# 下面自定义一个精确度
precision = 0.0001
print('-----------------随机的x是:', x)

while True:
    if np.abs(x - last_x) < precision:    # 退出死循环条件:更新时变化甚微
        break
    # 更新,梯度下降
    last_x = x
    x = x - eta * g(x)
    print('+++++++++++++++++更新之后的x是:', x)

在这里插入图片描述
这是一个死循环

eta = 0.01

如果 eta 的值设的比较小,会收敛,但是会很慢

# 给一个步幅,也就是学习率
eta = 0.01

# 正解为 x = 5.75, 若我们梯度下降求得的 x = 5.749, 5.7501 ... 亦是正确答案(很接近)
x = np.random.randint(0, 12, size = 1)[0]

# 多次 while 循环,每次梯度下降,记录一下上一次的值,规定一个精确度进行比较
# +0.1; +0.2; +1;...都是可以的,是为了让他们在一开始有差异
last_x = x + 0.1

# 下面自定义一个精确度
precision = 0.0001
print('-----------------随机的x是:', x)

while True:
    if np.abs(x - last_x) < precision:    # 退出死循环条件:更新时变化甚微
        break
    # 更新,梯度下降
    last_x = x
    x = x - eta * g(x)
    print('+++++++++++++++++更新之后的x是:', x)

在这里插入图片描述

画出eta=0.1时的梯度下降x的变化过程

# 多两行下述代码:
# x_ = [x]
#     x_.append(x)

eta = 0.1 

x = np.random.randint(0, 12, size = 1)[0]

last_x = x + 0.1

precision = 0.0001
print('-----------------随机的x是:', x)

x_ = [x]   # Python中的列表
count = 0  # 记录梯度下降的次数

while True:
    if np.abs(x - last_x) < precision:   
        break
    last_x = x
    count += 1
    x = x - eta * g(x)
    x_.append(x)     # 把更新后的 x 加入到 x_ 中

print('+++++++++++++++++梯度下降的次数是:', count)

# x1 是 Numpy 的数组
x1 = np.linspace(0, 11.5, 100)
y1 = f(x1)
plt.figure(figsize = (12, 9))   # 调整图像大小
plt.plot(x1, y1)

# 散点图
x_ = np.array(x_)   # x_ 需要从 Python 列表转为 Numpy 的数组,否则无法绘图
plt.scatter(x_, f(x_), color = 'red', s = 30)

在这里插入图片描述

总结

模拟的时候还发现了 eta 设置的过小算出来的值也是错误的现象,知道了原因后会补在这里

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/303034.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【EI会议征稿通知】第六届信息科学、电气与自动化工程国际学术会议(ISEAE 2024)

第六届信息科学、电气与自动化工程国际学术会议&#xff08;ISEAE 2024&#xff09; 2024 6th International Conference on Information Science, Electrical and Automation Engineering 第六届信息科学、电气与自动化工程国际学术会议&#xff08;ISEAE 2024&#xff09;定…

在Windows上使用VScode阅读kernel源码

有一说一&#xff0c;在Windows上使用Source Inside阅读kernel源码真的很舒服&#xff0c;但是有时候带着轻薄本出去&#xff0c;又不想往轻薄本上安装很多的软件&#xff0c;就使用VS code临时阅读kernel源码。如果不能进行跳转&#xff0c;阅读kernel源码就很难受&#xff0c…

使用使用maven后jstl标签库无法使用

创建maven项目后配置了jstl标签库的依赖&#xff0c;但是一直不行&#xff0c;jsp页面还是原样给我输出&#xff0c;然后去网上找了许多办法&#xff0c;类似于配置文件之类的&#xff0c;结果发现对我并没有什么用&#xff0c;还是原样输出 然后就各种查找&#xff0c;发现了一…

安卓上使用免费的地图OpenStreetMap

前一段使用了微信的地图&#xff0c;非常的好用。但是存在的问题是海外无法使用&#xff0c;出国就不能用了&#xff1b; 其实国内三家&#xff1a;百度&#xff0c;高德&#xff0c;微信都是一样的问题&#xff0c;当涉及到商业使用的时候需要付费&#xff1b; 国外除了谷歌…

华为这块单板是姐交付的

写在前面&#xff1a;“所以表不忘初心&#xff0c;而必果本愿也。”回看这一路走来&#xff0c;无论遇到多大的困难、压力和焦虑&#xff0c;我们只有迎难而上&#xff0c;勇往直前&#xff0c;不断学习和成长&#xff0c;才能时刻保持对工作的热情和迎接挑战的勇气。” 转角…

Vue入门二(列表渲染|数据的双向绑定|事件处理)

文章目录 一、列表渲染小案例补充es6对象写法v-for可以循环的类型补充js可循环类型key值的解释 二、数据的双向绑定三、事件处理基本使用过滤案例事件修饰符 一、列表渲染 小案例 <!DOCTYPE html><html lang"en"><head><meta charset"UTF…

openGauss学习笔记-190 openGauss 数据库运维-常见故障定位案例-服务启动失败

文章目录 openGauss学习笔记-190 openGauss 数据库运维-常见故障定位案例-服务启动失败190.1 服务启动失败190.1.1 问题现象190.1.2 原因分析190.1.3 处理办法 openGauss学习笔记-190 openGauss 数据库运维-常见故障定位案例-服务启动失败 190.1 服务启动失败 190.1.1 问题现…

Redis(三)持久化

文章目录 RDB&#xff08;Redis Database&#xff09;自动触发保存频率修改dump文件保存路径修改文件保存名称dump恢复 手动触发save![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/a56fdff44aee4efa96c2ce3615b69dc1.png)bgsave 优劣优点缺点 检查修复dump文件会触…

(生物信息学)R语言绘图初-中-高级——3-10分文章必备——点阵图(初级)

生物信息学文章的发表要求除了思路和热点以外,图片绘制是否精美也是十分重要的,本专栏为(生物信息学)R语言绘图初-中-高级——3-10分文章必备,主要通过大量文献,总结3-10分文章中高频出现的各种图片,并给大家提供图片复现的R语言代码,及图片识读。 本专栏将向大家介绍…

数据库原理与应用期末复习试卷1

数据库原理与应用期末复习试卷1 一.单项选择题 数据库系统是采用了数据库技术的计算机系统&#xff0c;由系统数据库&#xff0c;数据库管理系统&#xff0c;应用系统和&#xff08;C&#xff09;组成。 ​ A.系统分析员 B.程序员 C.数据库管理员 D.操作员 数据库系统的体系…

基于YOLOv7算法的高精度实时19类动物目标检测识别系统(PyTorch+Pyside6+YOLOv7)

摘要&#xff1a;基于YOLOv7算法的高精度实时19类动物目标检测系统可用于日常生活中检测与定位19类动物目标&#xff08;水牛、 斑马、 大象、 水豚、 海龟、 猫、 奶牛、 鹿、 狗、 火烈鸟、 长颈鹿、 捷豹、 袋鼠、 狮子、 鹦鹉、 企鹅、 犀牛、 羊和老虎&#xff09;&#x…

基于WIFI指纹的室内定位算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1WIFI指纹定位原理 4.2 指纹数据库建立 4.3定位 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 .....................................…

动态规划(整数拆分、不同的二叉搜索树)

343. 整数拆分 给定一个正整数 n&#xff0c;将其拆分为至少两个正整数的和&#xff0c;并使这些整数的乘积最大化。 返回你可以获得的最大乘积。 示例 1: 输入: 2 输出: 1 解释: 2 1 1, 1 1 1。 示例 2: 输入: 10 输出: 36 解释: 10 3 3 4, 3 3 4 36。 说明: 你…

JavaScript基础(25)_dom查询练习(二)

<!DOCTYPE html> <html lang"zh"> <head><meta charset"UTF-8"><title>dom查询练习二</title><link rel"stylesheet" href"../browser_default_style/reset.css"><style>form {margi…

阿里与上交大提出 LLM 长文本计算新解法:可处理文本长达 1900k 字节

在实际应用大模型的过程中&#xff0c;尤其是处理长文本的上下文信息时&#xff0c;如何高效灵活地调度计算资源成为一个学术界与工业界共同关注的问题。 大语言模型所能容纳的上下文长度直接影响了诸如 ChatGPT 等高级应用与用户交互体验的优劣程度&#xff0c;这给云环境下的…

CHS_02.1.1.2+操作系统的特征

CHS_02.1.1.2操作系统的特征 操作系统的四个特征并发这个特征为什么并发性对于操作系统来说是一个很重要的基本特性资源共享虚拟异步性 操作系统的四个特征 操作系统有并发 共享 虚拟和异部这四个基本的特征 其中 并发和共享是两个最基本的特征 二者互为存在条件 我们会按照这…

pycharm中Pyside2/QtDesigner安装和配置

目录 1、安装pyqt5 2、安装pyqt5-tools 3、在pycharm中配置Qt Designer PyQt5/QtDesigner安装和配置 1、安装pyqt5 pip install pyqt5 安装了 pyqt5 之后&#xff0c;在 python 安装目录下面的 Scripts 文件夹中&#xff0c;有一个 pyuic5.exe 文件&#xff0c;这个可执行文…

大模型上下文长度的超强扩展:从LongLoRA到LongQLoRA

前言 本文一开始是《七月论文审稿GPT第2版&#xff1a;从Meta Nougat、GPT4审稿到Mistral、LongLora Llama》中4.3节的内容&#xff0c;但考虑到 一方面&#xff0c;LongLora的实用性较高二方面&#xff0c;为了把LongLora和LongQLora更好的写清楚&#xff0c;而不至于受篇幅…

【JUC】进程和线程

目录 &#x1f4e2;什么是进程?&#x1f3a1;什么是线程?&#x1f680;进程和线程的区别?&#x1f3a2;Java 线程和操作系统的线程有啥区别&#xff1f;&#x1f396;️JDK21的虚拟线程&#x1f3af;虚拟线程和平台线程的对比 &#x1f4e2;什么是进程? 进程是程序的一次执…

1032: 员工薪水 和 1041: 数列求和2

1032: 员工薪水 某公司规定&#xff0c;销售人员工资由基本工资和销售提成两部分组成&#xff0c;其中基本工资是1500元/月&#xff0c;销售提成规则如下&#xff1a; 销售额小于等于10000元时&#xff0c;按照5%提成&#xff1b; 销售额大于10000元但小于等于50000元时&am…